Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Gaussian noise to the dynamics for improved parameter identification #250

Draft
wants to merge 3 commits into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 53 additions & 24 deletions examples-gallery/plot_non_contiguous_parameter_identification.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,8 +55,9 @@
# Set up the four sets of equations of motion, one for each of the four
# measurements.
#
x1, x2, x3, x4 = me.dynamicsymbols('x1, x2, x3, x4')
u1, u2, u3, u4 = me.dynamicsymbols('u1, u2, u3, u4')
x1, x2, x3, x4, x5, x6 = me.dynamicsymbols('x1, x2, x3, x4, x5, x6')
u1, u2, u3, u4, u5, u6 = me.dynamicsymbols('u1, u2, u3, u4, u5, u6')
n1, n2, n3, n4, n5, n6 = me.dynamicsymbols('n1, n2, n3, n4, n5, n6')
m, c, k, l0 = sm.symbols('m, c, k, l0')
t = me.dynamicsymbols._t

Expand All @@ -65,10 +66,14 @@
x2.diff(t) - u2,
x3.diff(t) - u3,
x4.diff(t) - u4,
m*u1.diff(t) + c*u1 + k*(x1 - l0),
m*u2.diff(t) + c*u2 + k*(x2 - l0),
m*u3.diff(t) + c*u3 + k*(x3 - l0),
m*u4.diff(t) + c*u4 + k*(x4 - l0),
x5.diff(t) - u5,
x6.diff(t) - u6,
m*u1.diff(t) + c*u1 + k*(x1 - l0) + n1,
m*u2.diff(t) + c*u2 + k*(x2 - l0) + n2,
m*u3.diff(t) + c*u3 + k*(x3 - l0) + n3,
m*u4.diff(t) + c*u4 + k*(x4 - l0) + n4,
m*u5.diff(t) + c*u5 + k*(x5 - l0) + n5,
m*u6.diff(t) + c*u6 + k*(x6 - l0) + n6,
])

sm.pprint(eom)
Expand All @@ -86,12 +91,16 @@
u2,
u3,
u4,
u5,
u6,
1/m*(-c*u1 - k*(x1 - l0)),
1/m*(-c*u2 - k*(x2 - l0)),
1/m*(-c*u3 - k*(x3 - l0)),
1/m*(-c*u4 - k*(x4 - l0)),
1/m*(-c*u5 - k*(x5 - l0)),
1/m*(-c*u6 - k*(x6 - l0)),
])
states = [x1, x2, x3, x4, u1, u2, u3, u4]
states = [x1, x2, x3, x4, x5, x6, u1, u2, u3, u4, u5, u6]
parameters = [m, c, k, l0]
par_vals = [1.0, 0.25, 1.0, 1.0]

Expand All @@ -102,9 +111,9 @@
times = np.linspace(t0, tf, num=num_nodes)

measurements = []
np.random.seed(123)
#np.random.seed(123)
for i in range(4):
x0 = 4.0*np.random.randn(8)
x0 = 4.0*np.random.randn(12)
sol = solve_ivp(lambda t, x, p: eval_rhs(*x, *p).squeeze(),
(t0, tf), x0, t_eval=times, args=(par_vals,))
measurements.append(sol.y[0, :] +
Expand Down Expand Up @@ -134,27 +143,33 @@
#
interval_value = (tf - t0) / (num_nodes - 1)

w = [1.0, 1.0, 1.0, 1.0]
w = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]


def obj(free):
return interval_value*np.sum(
w[0]*(free[0*num_nodes:1*num_nodes] - measurements[0])**2 +
w[1]*(free[1*num_nodes:2*num_nodes] - measurements[1])**2 +
w[2]*(free[2*num_nodes:3*num_nodes] - measurements[2])**2 +
w[3]*(free[3*num_nodes:4*num_nodes] - measurements[3])**2)
w[1]*(free[1*num_nodes:2*num_nodes] - measurements[0])**2 +
w[2]*(free[2*num_nodes:3*num_nodes] - measurements[0])**2 +
w[3]*(free[3*num_nodes:4*num_nodes] - measurements[1])**2 +
w[4]*(free[4*num_nodes:5*num_nodes] - measurements[1])**2 +
w[5]*(free[5*num_nodes:6*num_nodes] - measurements[1])**2)


def obj_grad(free):
grad = np.zeros_like(free)
grad[:num_nodes] = 2*w[0]*interval_value*(
free[0*num_nodes:1*num_nodes] - measurements[0])
grad[num_nodes:2*num_nodes] = 2*w[1]*interval_value*(
free[1*num_nodes:2*num_nodes] - measurements[1])
free[1*num_nodes:2*num_nodes] - measurements[0])
grad[2*num_nodes:3*num_nodes] = 2*w[2]*interval_value*(
free[2*num_nodes:3*num_nodes] - measurements[2])
free[2*num_nodes:3*num_nodes] - measurements[0])
grad[3*num_nodes:4*num_nodes] = 2*w[3]*interval_value*(
free[3*num_nodes:4*num_nodes] - measurements[3])
free[3*num_nodes:4*num_nodes] - measurements[1])
grad[4*num_nodes:5*num_nodes] = 2*w[4]*interval_value*(
free[4*num_nodes:5*num_nodes] - measurements[1])
grad[5*num_nodes:6*num_nodes] = 2*w[5]*interval_value*(
free[5*num_nodes:6*num_nodes] - measurements[1])
return grad


Expand All @@ -166,8 +181,19 @@ def obj_grad(free):

# %%
bounds = {
c: (0.01, 2.0),
k: (0.1, 10.0),
c: (0.0, 100.0),
k: (0.0, 100.0),
}

noise_scale = 0.5

known_trajectories = {
n1: noise_scale*np.random.randn(num_nodes),
n2: noise_scale*np.random.randn(num_nodes),
n3: noise_scale*np.random.randn(num_nodes),
n4: noise_scale*np.random.randn(num_nodes),
n5: noise_scale*np.random.randn(num_nodes),
n6: noise_scale*np.random.randn(num_nodes),
}

problem = Problem(
Expand All @@ -178,6 +204,7 @@ def obj_grad(free):
num_nodes,
interval_value,
known_parameter_map=par_map,
known_trajectory_map=known_trajectories,
time_symbol=me.dynamicsymbols._t,
integration_method='midpoint',
bounds=bounds,
Expand All @@ -192,9 +219,9 @@ def obj_grad(free):
# are used and the speeds are set to zero. The last two values are the guesses
# for :math:`c` and :math:`k`, respectively.
#
initial_guess = np.hstack((np.array(measurements).flatten(), # x
np.zeros(4*num_nodes), # u
[0.1, 3.0])) # c, k
initial_guess = np.hstack((np.zeros(6*num_nodes), # x
np.zeros(6*num_nodes), # u
[0.0, 0.0])) # c, k

# %%
# Solve the Optimization Problem
Expand All @@ -220,9 +247,11 @@ def obj_grad(free):
# Plot the Measurements and the Estimated Trajectories
# ----------------------------------------------------
#
fig, ax = plt.subplots(8, 1, figsize=(6, 8), sharex=True)
for i in range(4):
ax[i].plot(times, measurements[i])
fig, ax = plt.subplots(12, 1, figsize=(6, 8), sharex=True)
for i in [0, 1, 2]:
ax[i].plot(times, measurements[0])
for i in [3, 4, 5]:
ax[i].plot(times, measurements[1])
problem.plot_trajectories(solution, axes=ax)

# sphinx_gallery_thumbnail_number = 3
Expand Down
Loading