Timeseries extraction for Courtois-Neuromod fMRI datasets.
Documentation on how to use this tool can be found here
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── atlases <- Where the atlases are saved
├── data <- Where the CNeuroMod fMRI datasets are installed
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── output <- Where extracted timeseries are saved
├── setup.py <- makes project pip installable (pip install -e .) so timeseries can be imported
├── timeseries <- Scripts to denoise and extract fMRI timeseries.
│ ├── __init__.py <- Makes timeseries a Python module
│ │
│ ├── config <- Where hydra config files (.yaml) are saved
│ │ ├── dataset
│ │ │ ├── friends.yaml
│ │ │ ├── mario3.yaml
│ │ │ ├── movie10.yaml
│ │ │ └── shinobi.yaml
│ │ │
│ │ ├── denoise
│ │ │ ├── simple.yaml
│ │ │ ├── simple+gsr.yaml
│ │ │ ├── scrubbing.2.yaml
│ │ │ └── scrubbing.2+gsr.yaml
│ │ │
│ │ ├── parcellation
│ │ │ ├── fLocFFA.yaml
│ │ │ ├── langToneva_AngularG.yaml
│ │ │ ├── npythyV1.yaml
│ │ │ ├── ward10k_T1w.yaml
│ │ │ ├── yeo7nets_DMN.yaml
│ │ │ ├── schaefer1000.yaml
│ │ │ └── mist444.yaml
│ │ │
│ │ └── base.yaml
│ │
│ ├── extract.py
│ ├── run.py
│ └── utils.py
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org
Project based on the cookiecutter data science project template. #cookiecutterdatascience