Skip to content

chollette/SEDNet_Shallow-Encoder-Decoder-Network-for-Brain-Tumor-Segmentation

Repository files navigation

This repo is built for paper: SEDNet_Shallow-Encoder-Decoder-Network-for-Brain-Tumor-Segmentation (https://doi.org/10.48550/arXiv.2401.13403)

License GitHub Issues GitHub Stars

Description

SEDNet is a segmentation algorithm that adopts sufficiency in hierarchical convolutional downsampling and selective skip mechanism for cost-efficient and effective Brain Tumor semantic segmentation. SEDNet with the integration of the proposed preprocessing algorithm and optimization function on the BraTS2020 set reserved for testing achieves impressive dice and Hausdorff scores of 0.9308, 0.9451, 0.9026, and 0.7040, 1.2866, 0.7762 for non-enhancing tumor core (NTC), peritumoral edema (ED), and enhancing tumor (ET), respectively. With about 1.3 million parameters and impressive performance in comparison to the state-of-the-art, SEDNet(X) is shown to be computationally efficient for real-time clinical diagnosis.

Citation

If it is helpful for your work, please cite this paper:

@misc{olisah2024sednet,
      title={SEDNet: Shallow Encoder-Decoder Network for Brain Tumor Segmentation}, 
      author={Chollette C. Olisah},
      year={2024},
      eprint={2401.13403},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Example Model Use

model_dir = "your model directory"
model = keras.models.load_model(model_dir, compile=False)
model.compile(loss=bce_dice_loss2, optimizer=keras.optimizers.Adam(learning_rate=0.0003), metrics = [dice_coef, sensitivity, specificity, C_0, C_1, C_2])

Example Evaluation Result

License

This project is licensed under the MIT License.

Chollette, SEDNet_Shallow-Encoder-Decoder-Network-for-Brain-Tumor-Segmentation