We provide traffic benchmark results on the popular TaxiBJ dataset using $4\rightarrow 4$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Cosine Annealing scheduler (5 epochs warmup and min lr is 1e-6) and single GPU.
STL Benchmarks on TaxiBJ
Method |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
SSIM |
PSNR |
Download |
ConvLSTM-S |
50 epoch |
14.98M |
20.74G |
815 |
0.3358 |
15.32 |
0.9836 |
39.45 |
model | log |
E3D-LSTM* |
50 epoch |
50.99M |
98.19G |
60 |
0.3427 |
14.98 |
0.9842 |
39.64 |
model | log |
PhyDNet |
50 epoch |
3.09M |
5.60G |
982 |
0.3622 |
15.53 |
0.9828 |
39.46 |
model | log |
PredNet |
50 epoch |
12.5M |
0.85G |
5031 |
0.3516 |
15.91 |
0.9828 |
39.29 |
model | log |
PredRNN |
50 epoch |
23.66M |
42.40G |
416 |
0.3194 |
15.31 |
0.9838 |
39.51 |
model | log |
MIM |
50 epoch |
37.86M |
64.10G |
275 |
0.3110 |
14.96 |
0.9847 |
39.65 |
model | log |
MAU |
50 epoch |
4.41M |
6.02G |
540 |
0.3268 |
15.26 |
0.9834 |
39.52 |
model | log |
PredRNN++ |
50 epoch |
38.40M |
62.95G |
301 |
0.3348 |
15.37 |
0.9834 |
39.47 |
model | log |
PredRNN.V2 |
50 epoch |
23.67M |
42.63G |
378 |
0.3834 |
15.55 |
0.9826 |
39.49 |
model | log |
DMVFN |
50 epoch |
3.54M |
0.057G |
6347 |
3.3954 |
45.52 |
0.8321 |
31.14 |
model | log |
SimVP+IncepU |
50 epoch |
13.79M |
3.61G |
533 |
0.3282 |
15.45 |
0.9835 |
39.45 |
model | log |
SimVP+gSTA-S |
50 epoch |
9.96M |
2.62G |
1217 |
0.3246 |
15.03 |
0.9844 |
39.71 |
model | log |
TAU |
50 epoch |
9.55M |
2.49G |
1268 |
0.3108 |
14.93 |
0.9848 |
39.74 |
model | log |
Benchmark of MetaFormers on SimVP (MetaVP)
MetaFormer |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
SSIM |
PSNR |
Download |
SimVP+IncepU |
50 epoch |
13.79M |
3.61G |
533 |
0.3282 |
15.45 |
0.9835 |
39.45 |
model | log |
SimVP+gSTA-S |
50 epoch |
9.96M |
2.62G |
1217 |
0.3246 |
15.03 |
0.9844 |
39.71 |
model | log |
ViT |
50 epoch |
9.66M |
2.80G |
1301 |
0.3171 |
15.15 |
0.9841 |
39.64 |
model | log |
Swin Transformer |
50 epoch |
9.66M |
2.56G |
1506 |
0.3128 |
15.07 |
0.9847 |
39.65 |
model | log |
Uniformer |
50 epoch |
9.52M |
2.71G |
1333 |
0.3268 |
15.16 |
0.9844 |
39.64 |
model | log |
MLP-Mixer |
50 epoch |
8.24M |
2.18G |
1974 |
0.3206 |
15.37 |
0.9841 |
39.49 |
model | log |
ConvMixer |
50 epoch |
0.84M |
0.23G |
4793 |
0.3634 |
15.63 |
0.9831 |
39.41 |
model | log |
Poolformer |
50 epoch |
7.75M |
2.06G |
1827 |
0.3273 |
15.39 |
0.9840 |
39.46 |
model | log |
ConvNeXt |
50 epoch |
7.84M |
2.08G |
1918 |
0.3106 |
14.90 |
0.9845 |
39.76 |
model | log |
VAN |
50 epoch |
9.48M |
2.49G |
1273 |
0.3125 |
14.96 |
0.9848 |
39.72 |
model | log |
HorNet |
50 epoch |
9.68M |
2.54G |
1350 |
0.3186 |
15.01 |
0.9843 |
39.66 |
model | log |
MogaNet |
50 epoch |
9.96M |
2.61G |
1005 |
0.3114 |
15.06 |
0.9847 |
39.70 |
model | log |
TAU |
50 epoch |
9.55M |
2.49G |
1268 |
0.3108 |
14.93 |
0.9848 |
39.74 |
model | log |