Skip to content

V0.3.0-MFMNIST-Weights

Compare
Choose a tag to compare
@Lupin1998 Lupin1998 released this 18 Jun 22:57

Similar to Moving MNIST, we also provide the advanced version of MNIST, i.e., MFMNIST benchmark results, using $10\rightarrow 10$ frames prediction setting following PredRNN. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Onecycle scheduler and single GPU.

  • For a fair comparison of different methods, we provide config files in configs/mfmnist.
  • We also benchmark popular Metaformer architectures on SimVP with training times of 200 epochs. We provide config files in configs/mfmnist/simvp.

STL Benchmarks on MFMNIST

Method Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
ConvLSTM-S 200 epoch 15.0M 56.8G 113 28.87 113.20 0.8793 22.07 model | log
ConvLSTM-L 200 epoch 33.8M 127.0G 50 25.51 104.85 0.8928 22.67 model | log
PredNet 200 epoch 12.5M 8.6G 659 185.94 318.30 0.6713 14.83 model | log
PhyDNet 200 epoch 3.1M 15.3G 182 34.75 125.66 0.8567 22.03 model | log
PredRNN 200 epoch 23.8M 116.0G 54 22.01 91.74 0.9091 23.42 model | log
PredRNN++ 200 epoch 38.6M 171.7G 38 21.71 91.97 0.9097 23.45 model | log
MIM 200 epoch 38.0M 179.2G 37 23.09 96.37 0.9043 23.13 model | log
MAU 200 epoch 4.5M 17.8G 201 26.56 104.39 0.8916 22.51 model | log
E3D-LSTM 200 epoch 51.0M 298.9G 18 35.35 110.09 0.8722 21.27 model | log
PredRNN.V2 200 epoch 23.9M 116.6G 52 24.13 97.46 0.9004 22.96 model | log
DMVFN 200 epoch 3.5M 0.2G 1145 118.32 220.02 0.7572 16.76 model | log
SimVP+IncepU 200 epoch 58.0M 19.4G 209 30.77 113.94 0.8740 21.81 model | log
SimVP+gSTA-S 200 epoch 46.8M 16.5G 282 25.86 101.22 0.8933 22.61 model | log
TAU 200 epoch 44.7M 16.0G 283 24.24 96.72 0.8995 22.87 model | log

Benchmark of MetaFormers Based on SimVP (MetaVP)

MetaFormer Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
IncepU (SimVPv1) 200 epoch 58.0M 19.4G 209 30.77 113.94 0.8740 21.81 model | log
gSTA (SimVPv2) 200 epoch 46.8M 16.5G 282 25.86 101.22 0.8933 22.61 model | log
ViT 200 epoch 46.1M 16.9.G 290 31.05 115.59 0.8712 21.83 model | log
Swin Transformer 200 epoch 46.1M 16.4G 294 28.66 108.93 0.8815 22.08 model | log
Uniformer 200 epoch 44.8M 16.5G 296 29.56 111.72 0.8779 21.97 model | log
MLP-Mixer 200 epoch 38.2M 14.7G 334 28.83 109.51 0.8803 22.01 model | log
ConvMixer 200 epoch 3.9M 5.5G 658 31.21 115.74 0.8709 21.71 model | log
Poolformer 200 epoch 37.1M 14.1G 341 30.02 113.07 0.8750 21.95 model | log
ConvNeXt 200 epoch 37.3M 14.1G 344 26.41 102.56 0.8908 22.49 model | log
VAN 200 epoch 44.5M 16.0G 288 31.39 116.28 0.8703 22.82 model | log
HorNet 200 epoch 45.7M 16.3G 287 29.19 110.17 0.8796 22.03 model | log
MogaNet 200 epoch 46.8M 16.5G 255 25.14 99.69 0.8960 22.73 model | log
TAU 200 epoch 44.7M 16.0G 283 24.24 96.72 0.8995 22.87 model | log