Skip to content

changyeyi/elasticsearch-taste

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Elasticsearch Taste Plugin

Overview

Elasticsearch Taste Plugin is Mahout Taste-based Collaborative Filtering implementation. This plugin provides the following features of a recommendation engine on Elasticsearch:

  • Data management for Users/Items/Preferences.
  • Item-based Recommender.
  • User-based Recommender.
  • Similar Users/Contents
  • Text Analysis

Version

Taste Tested on elasticsearch
master 2.4.X
2.3.0 2.3.5
1.5.0 1.5.1
0.4.0 1.4.0
0.3.1 1.3.1

Note that this plugin supports Java 8 or the above. See README_river.md under Elasticsearch Taste 0.4.0.

Issues/Questions

Please file an issue. (Japanese forum is here.)

Installation

Install Taste Plugin

$ $ES_HOME/bin/plugin install org.codelibs/elasticsearch-taste/2.3.0

Getting Started

Insert Data

In this section, using MovieLens data set, you can learn about Taste plugin. For more information about MovieLens, see MovieLens site. The preference data set is u.data, it contains user id, item id, rating and timestamp. Download it and then insert data by Event API:

curl -o u.data http://files.grouplens.org/datasets/movielens/ml-100k/u.data
cat u.data | awk '{system("curl -XPOST localhost:9200/movielens/_taste/event?pretty -d \"{\\\"user\\\":{\\\"id\\\":" $1 "},\\\"item\\\":{\\\"id\\\":" $2 "},\\\"value\\\":" $3 ",\\\"timestamp\\\":" $4 "000}\"")}'

By the above request, the preference values are stored in "movielens" index. After inserting data, check them in the index:

curl -XGET "localhost:9200/movielens/_search?q=*:*&pretty"

Recommend Items From Users

To compute recommended items from users, execute the following request:

curl -XPOST localhost:9200/_taste/action/recommended_items_from_user -d '{
  "num_of_items": 10,
  "data_model": {
    "cache": {
      "weight": "100m"
    }
  },
  "index_info": {
    "index": "movielens"
  }
}'

The result is stored in movielens/recommendation. The response of the above request has a action name at the "name" property. To check if your request is finished, send a GET request:

curl -XGET "localhost:9200/_taste/action?pretty"

If the response contains the action name, your request is not completed yet.

For checking the result, send the following query:

curl -XGET "localhost:9200/movielens/recommendation/_search?q=*:*&pretty"

A value of "user_id" property is a target user, "items" property is recommended items which contains "item_id" and "value" property. A "value" property is a value of similarity.

The computation might take a long time... If you want to stop it, execute below:

curl -XDELETE localhost:9200/_taste/action/{action_name}

Evaluate Result

You can evaluate parameters, such as similarity and neighborhood, with the following "evaluate_items_from_user" action.

curl -XPOST localhost:9200/_taste/action/evaluate_items_from_user -d '{
  "evaluation_percentage": 1.0,
  "training_percentage": 0.9,
  "margin_for_error": 1.0,
  "data_model": {
    "cache": {
      "weight": "100m"
    }
  },
  "index_info": {
    "index": "movielens"
  },
  "neighborhood": {
    "factory": "org.codelibs.elasticsearch.taste.neighborhood.NearestNUserNeighborhoodFactory",
    "neighborhood_size": 100
  },
  "evaluator": {
    "id": "movielens_result",
    "factory": "org.codelibs.elasticsearch.taste.eval.RMSEvaluatorFactory"
  }
}'

The result is stored in report type:

curl -XGET "localhost:9200/movielens/report/_search?q=evaluator_id:movielens_result&pretty"
{
  "_index": "movielens",
  "_type": "report",
  "_id": "COscswwlQIugP2Rf0XKH-w",
  "_version": 1,
  "_score": 1,
  "_source": {
    "evaluation": {
      "score": 1.0199981244413419,
      "preference": {
        "total": 10092,
        "no_estimate": 178,
        "success": 6671,
        "failure": 3243
      },
      "time": {
        "average_processing": 18,
        "total_processing": 184813,
        "max_processing": 22881
      }
      "target": {
        "test": 915,
        "training": 943
      }
    }
    "@timestamp": "2014-05-07T21:15:43.948Z",
    "evaluator_id": "movielens_result",
    "report_type": "user_based",
    "config": {
      "training_percentage": 0.9,
      "evaluation_percentage": 1,
      "margin_for_error": 1
    }
  }
}

Similar Users

Calcurating similar users, run the following request:

curl -XPOST localhost:9200/_taste/action/similar_users -d '{
  "num_of_users": 10,
  "data_model": {
    "cache": {
      "weight": "100m"
    }
  },
  "index_info": {
    "index": "movielens"
  }
}'

If you check similar users for User ID 1, type the below:

curl -XGET "localhost:9200/movielens/user_similarity/_search?q=user_id:1&pretty"

Get by Your System ID

This plugin has own ID, such as user_id or item_id. If you want to access your system ID, use the following search API:

curl -XGET "localhost:9200/{index}/{type}/_taste/{user|item}/{your_user_or_item_id}?pretty"

For example, if you get similar users from ID=115:

curl -XGET localhost:9200/movielens/recommendation/_taste/user/1

Create Vectors from Text

You can create a term vector from your index which has a field with "term_vector". For the following example, text data are stored into "description" field in "ap" index.

curl -XPOST localhost:9200/ap?pretty
curl -XPOST localhost:9200/ap/article/_mapping?pretty -d '{
  "article" : {
    "properties" : {
      "id" : {
        "type" : "string",
        "index" : "not_analyzed"
      },
      "label" : {
        "type" : "string",
        "index" : "not_analyzed"
      },
      "description" : {
        "type" : "string",
        "analyzer" : "standard",
        "term_vector": "with_positions_offsets_payloads",
        "store" : true
      }
    }
  }
}'
curl -o ap.txt http://mallet.cs.umass.edu/ap.txt
sed -e "s/[\'\`\\]//g" ap.txt | awk -F"\t" '{sub(" ","",$1);system("curl -XPOST localhost:9200/ap/article/" $1 " -d \"{\\\"id\\\":\\\"" $1 "\\\",\\\"label\\\":\\\"" $2 "\\\",\\\"description\\\":\\\"" $3 "\\\"}\"")}'

To generate the term vector, run the following river:

curl -XPOST localhost:9200/_taste/action/generate_term_values?pretty -d '{
  "source": {
    "index": "ap",
    "type": "article",
    "fields": ["description"]
  },
  "event": {
    "user_index": "ap_term",
    "user_type": "doc",
    "item_index": "ap_term",
    "item_type": "term",
    "preference_index": "ap_term",
    "preference_type": "preference"
  }
}'

source property specify index, type and fields as source information, and event property is output information which is user/item/preference format.

Specification

Data Management

This plugin manages data of Users, Items and Preferences on Elasticsearch. These data are stored in each index and type. By default, they are in:

Data Index Type
User (Any) user
Item (Any) item
Preference (Any) preference

User index manages id and information about itself. User index contains the following properties:

Name Type Description
system_id string Unique ID. If your system has User ID, use it.
user_id long Unique User ID for this plugin.
@timestamp date Created/Updated time.
(Any) (any) You can use other information, such as age, tel,...

Item index manages an item information and contains:

Name Type Description
system_id string Unique ID. If your system has Item ID, use it.
item_id long Unique Item ID for this plugin.
@timestamp date Created/Updated time.
(Any) (any) You can use other information, such as price, publish date,...

Preference index manages values rated by an user for an item.

Name Type Description
user_id long Unique User ID for this plugin.
item_id long Unique Item ID for this plugin.
value float Value rated by user_id for item_id.
@timestamp date Created/Updated time.

You can create/update/delete the above index and document with Elasticsearch manner.

Insert Preference Value

Taste plugin provides an useful API to register a preference value. If you send it to http://.../{index}/_taste/event, user_id and item_id are generated and then the preference value is inserted. You can send multiple data with one request by using carriage return.

For example, if User ID is "U0001", Item ID is "I1000" and the preference(rating) value is 10.0, the request is below:

curl -XPOST localhost:9200/sample/_taste/event -d '{ user: { id: "U0001" }, item: { id: "I1000" }, value: 10.0 }'

If you send multiple data, the request is below:

curl -XPOST localhost:9200/sample/_taste/event -d \
  '{ user: { id: "U0001" }, item: { id: "I1000" }, value: 10.0 }
  { user: { id: "U0002" }, item: { id: "I1001" }, value: 15.0 }'

Values of user_id, item_id and @timestamp are generated automatically. They are stored in "sample" index. The index name can be changed to any name you want.

User Recommender

Precompute Recommended Items From Users

Recommended items for an user are computed from similar users. The computing process is started by creating a river configuration. If 10 recommended items are generated from similar users, the river configuration is:

curl -XPOST localhost:9200/_taste/action/recommended_items_from_user -d '{
  "num_of_items": 10,
  "max_duration": 120,
  "data_model": {
    "class": "org.codelibs.elasticsearch.taste.model.ElasticsearchDataModel",
    "scroll": {
      "size": 1000,
      "keep_alive": 60
    },
    "cache": {
      "weight": "100m"
    }
  },
  "index_info": {
    "preference": {
      "index": "sample",
      "type": "preference"
    },
    "user": {
      "index": "sample",
      "type": "user"
    },
    "item": {
      "index": "sample",
      "type": "item"
    },
    "recommendation": {
      "index": "sample",
      "type": "recommendation"
    },
    "field": {
      "user_id": "user_id",
      "item_id": "item_id",
      "value": "value",
      "items": "items",
      "timestamp": "@timestamp"
    }
  },
  "similarity": {
    "factory": "org.codelibs.elasticsearch.taste.similarity.LogLikelihoodSimilarityFactory"
  },
  "neighborhood": {
    "factory": "org.codelibs.elasticsearch.taste.neighborhood.NearestNUserNeighborhoodFactory",
    "min_similarity": 0.9,
    "neighborhood_size": 10
  }
}'

The configuration is:

Name Type Description
num_of_items int The number of recommended items.
max_duration int Max duration for computing(min).
data_model.class string Class name for DataModel implementation.
data_model.scroll object Elasticsearch scroll parameters.
data_model.cache string Cache size for the data model.
index_info object Index information(index/type/property name).
similarity.factory string Factroy name for Similarity implementation.
neighborhood.factory string Factroy name for Neighborhood implementation.

The recommended items are stored in sample/recommendation. You can see the result by:

curl -XGET "localhost:9200/sample/recommendation/_search?q=*:*&pretty"

The value of "items" property is recommended items.

Evaluate Result

To evaluate parameters for generating recommended items, you can use the following "evaluate_items_from_user" action.

curl -XPOST localhost:9200/_taste/action/evaluate_items_from_user -d '{
  "evaluation_percentage": 0.5,
  "training_percentage": 0.9,
  "data_model": {
    "class": "org.codelibs.elasticsearch.taste.model.ElasticsearchDataModel",
    "scroll": {
      "size": 1000,
      "keep_alive": 60
    },
    "cache": {
      "weight": "100m"
    }
  },
  "index_info": {
    "preference": {
      "index": "sample",
      "type": "preference"
    },
    "user": {
      "index": "sample",
      "type": "user"
    },
    "item": {
      "index": "sample",
      "type": "item"
    },
    "report": {
      "index": "sample",
      "type": "report"
    },
    "field": {
      "user_id": "user_id",
      "item_id": "item_id",
      "value": "value",
      "timestamp": "@timestamp"
    }
  },
  "similarity": {
    "factory": "org.codelibs.elasticsearch.taste.similarity.LogLikelihoodSimilarityFactory"
  },
  "neighborhood": {
    "factory": "org.codelibs.elasticsearch.taste.neighborhood.NearestNUserNeighborhoodFactory"
  }
}'
Name Type Description
evaluation_percentage float A sampling rate for a data model. 50% data is used if 0.5,
training_percentage float A rate for a training data set of sampled data model. If 0.9, 90% data is used as training one and 10% data is for testing.

The result is stored in report index(This example is sample/report).

Item Recommender

Precompute Recommended Items From Items

Recommended items for an item are computed from similar items. The computing process is started by creating a river configuration. If 10 recommended items are generated from similar items, the river configuration is:

curl -XPOST localhost:9200/_taste/action/recommended_items_from_item -d '{
  "num_of_items": 10,
  "max_duration": 120,
  "data_model": {
    "class": "org.codelibs.elasticsearch.taste.model.ElasticsearchDataModel",
    "scroll": {
      "size": 1000,
      "keep_alive": 60
    },
    "cache": {
      "weight": "100m"
    }
  },
  "index_info": {
    "preference": {
      "index": "sample",
      "type": "preference"
    },
    "user": {
      "index": "sample",
      "type": "user"
    },
    "item": {
      "index": "sample",
      "type": "item"
    },
    "item_similarity": {
      "index": "sample",
      "type": "item_similarity"
    },
    "field": {
      "user_id": "user_id",
      "item_id": "item_id",
      "value": "value",
      "items": "items",
      "timestamp": "@timestamp"
    }
  },
  "similarity": {
    "factory": "org.codelibs.elasticsearch.taste.similarity.LogLikelihoodSimilarityFactory"
  }
}'

The recommended items are stored in sample/item_similarity. You can see the result by:

curl -XGET "localhost:9200/sample/item_similarity/_search?q=*:*&pretty"

The value of "items" property is recommended items.

About

Mahout Taste-based recommendation on Elasticsearch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 100.0%