-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e33e703
commit c728c7e
Showing
23 changed files
with
653 additions
and
105 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,3 +3,4 @@ | |
.RData | ||
.Ruserdata | ||
docs | ||
inst/doc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,5 @@ | ||
exportPattern("^[[:alpha:]]+") | ||
# Generated by roxygen2: do not edit by hand | ||
|
||
export(blm_me) | ||
export(vecchia_cov) | ||
importFrom(Matrix,Diagonal) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
#' Bayesian normal linear regression models with (spatially) correlated measurement errors | ||
#' | ||
#' This function implements the Bayesian normal linear regression model subject to measurement error with semiconjugate priors. | ||
#' | ||
#' Model: Y = beta0 + beta_x X + beta_z Z + epsilon, epsilon ~ N(0, sigma2y) | ||
#' Measurement error: sigma_Y^2 ~ IG(0.01, 0.01), beta|sigma_Y^2 ~ N(0, sigma_Y^2*diag(var_beta)) | ||
#' | ||
#' @param Y n by 1 matrix, response | ||
#' @param X_mean n by 1 matrix or list of n by 1 matrices of length q, mean of X. | ||
#' @param X_prec n by n matrix or list of n by n matrices of length q, precision matrix of X. Support sparse matrix format from Matrix package. | ||
#' @param Z n by p matrix, covariates without measurement error | ||
#' @param nburn integer, burn-in iteration | ||
#' @param nthin integer, thin-in rate | ||
#' @param nsave integer, number of posterior samples | ||
#' @param prior list of prior parameters, default is var_beta = 100,a_Y = 0.01, b_Y = 0.01 | ||
#' @param saveX logical, save X or not | ||
#' | ||
#' @return list of (1) posterior, the (nsave)x(q+p) matrix of posterior samples as a coda object, | ||
#' (2) cputime, cpu time taken in seconds, | ||
#' and optionally (3) X_save, posterior samples of X | ||
#' @export | ||
#' | ||
#' @examples | ||
#' | ||
#' | ||
#' | ||
#' | ||
#' | ||
#' | ||
blm_me <- function(Y, | ||
X_mean, | ||
X_prec, | ||
Z, | ||
nburn = 2000, | ||
nsave = 2000, | ||
nthin = 5, | ||
prior = NULL, | ||
saveX = F){ | ||
|
||
# prior input, default | ||
if(is.null(prior)){ | ||
prior = list(var_beta = 100,a_Y = 0.01, b_Y = 0.01) | ||
} | ||
var_beta = 100 | ||
a_Y = 0.01 | ||
b_Y = 0.01 | ||
|
||
n_y = length(Y) | ||
if(is.vector(Z)) Z = as.matrix(Z) | ||
|
||
if(!is.list(X_mean) & !is.list(X_prec)){ | ||
q = 1 | ||
X_mean = list(X_mean) | ||
X_prec = list(X_prec) | ||
}else if(is.list(X_mean) & is.list(X_prec)){ | ||
q = length(X_mean) | ||
if(length(X_prec)!=q) stop("list length does not match") | ||
}else{ | ||
stop("X_mean is not vector/matrix or list") | ||
} | ||
X_prec_X_mean = list() | ||
X_spamstruct = vector(mode = 'list', length = q) | ||
sparsealgo = rep(T,q) | ||
|
||
for(qq in 1:q){ | ||
X_prec_X_mean[[qq]] = as.numeric(X_prec[[qq]]%*%X_mean[[qq]]) | ||
|
||
if(!("sparseMatrix" %in% is(X_prec[[qq]]))){ | ||
print(paste0(qq,"th X_prec is not a sparse matrix! Using dense algorithm, which may very slow when n is large")) | ||
sparsealgo[qq] = F | ||
}else{ | ||
X_prec[[qq]] = as(as(X_prec[[qq]], "generalMatrix"), "CsparseMatrix") | ||
X_prec[[qq]] = spam::as.spam.dgCMatrix(X_prec[[qq]])# spam object | ||
X_spamstruct[[qq]] = spam::chol(X_prec[[qq]]) | ||
} | ||
} | ||
|
||
X = matrix(0, n_y, q) | ||
for(qq in 1:q) X[,qq] = X_mean[[q]] | ||
if(is.null(names(X_mean))){ | ||
colnames(X) = paste0("exposure.",1:q) | ||
}else{ | ||
colnames(X) = paste0("exposure.",names(X_mean)) | ||
} | ||
|
||
p = ncol(Z) | ||
if(is.null(colnames(Z))){ | ||
colnames(Z) = paste0("covariate.",1:p) | ||
}else{ | ||
colnames(Z) = paste0("covariate.",colnames(Z)) | ||
} | ||
df_temp = as.data.frame(cbind(X,Z)) | ||
D = model.matrix( ~ ., df_temp) | ||
|
||
|
||
# prior | ||
Sigma_beta = diag(var_beta, ncol(D))# 3 coefficients(beta0, beta1, betaz) | ||
Sigma_betainv = solve(Sigma_beta) | ||
|
||
# initialize | ||
sigma2_Y = 1 | ||
beta = rep(0.1, ncol(D)) | ||
|
||
sigma2_save = matrix(0, nsave, 1) | ||
colnames(sigma2_save) = "sigma2_Y" | ||
beta_save = matrix(0, nsave, ncol(D)) | ||
colnames(beta_save) <- colnames(D) | ||
if(saveX){ | ||
X_save = array(0, dim = c(nsave, n_y, q)) | ||
dimnames(X_save)[[3]] = names(X_mean) | ||
} | ||
|
||
YtY = crossprod(Y) | ||
#browser() | ||
# sampler starts | ||
isave = 0 | ||
isnegative = numeric(n_y) | ||
pb <- txtProgressBar(style=3) | ||
t_start = Sys.time() | ||
for(imcmc in 1:(nsave*nthin + nburn)){ | ||
setTxtProgressBar(pb, imcmc/(nsave*nthin + nburn)) | ||
# sample beta | ||
Vbetainv = Sigma_betainv + crossprod(D)/sigma2_Y | ||
betatilde = solve(Vbetainv,crossprod(D,Y)/sigma2_Y) | ||
beta = as.numeric(spam::rmvnorm.prec(1, mu = betatilde, Q = Vbetainv)) | ||
# sample sigma2_Y | ||
SSR = crossprod(Y - D%*%beta) | ||
sigma2_Y = 1/rgamma(1, a_Y + n_y/2, b_Y + SSR/2 ) | ||
|
||
for(qq in 1:q){ | ||
# 1st is intercept | ||
b_G = X_prec_X_mean[[qq]] + beta[qq + 1]/sigma2_Y*(Y-D[,-(qq+1)]%*%beta[-(qq+1)]) | ||
Qtilde = X_prec[[qq]] # dense or spam | ||
if(sparsealgo[qq]){ | ||
Qtilde = Qtilde + spam::diag.spam(beta[qq + 1]^2/sigma2_Y, n_y, n_y) | ||
}else{ | ||
diag(Qtilde) = diag(Qtilde) + beta[qq + 1]^2/sigma2_Y | ||
} | ||
Xstar = spam::rmvnorm.canonical(1, b = as.vector(b_G), | ||
Q = Qtilde,# dense or spam | ||
Rstruct = X_spamstruct[[qq]]) #browser() | ||
if(imcmc > nburn) isnegative = isnegative + (Xstar<0) | ||
D[,(qq+1)] = as.vector(Xstar) | ||
} | ||
|
||
|
||
if((imcmc > nburn)&(imcmc%%nthin==0)){ | ||
isave = isave + 1 | ||
sigma2_save[isave] = sigma2_Y | ||
beta_save[isave,] = beta | ||
if(saveX) X_save[isave,,] = D[,2:(q+1)] | ||
} | ||
} | ||
t_diff = difftime(Sys.time(), t_start, units = "secs") | ||
#print(paste0("Exposure components contains negative vaules total ",sum(isnegative)," times among (# exposures) x n_y x (MCMC iter after burnin) = ",q," x ",n_y," x ",nsave*nthin," instances")) | ||
out = list() | ||
out$posterior = cbind(beta_save, sigma2_save) | ||
out$posterior = coda::mcmc(out$posterior) | ||
out$cputime = t_diff | ||
if(saveX) out$X_save = X_save | ||
out | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# data(mtcars) | ||
# | ||
# fitme = linreg_me(Y = mtcars$mpg, | ||
# X_mean = mtcars$wt, | ||
# X_prec = diag(rep(10, 32)), | ||
# Z = cbind(mtcars$am, mtcars$vs), var_beta = 10000, nsave = 1000, nthin = 10, saveX = T) | ||
# fitme_conj = linreg_me_conj(Y = mtcars$mpg, | ||
# X_mean = mtcars$wt, | ||
# X_prec = Matrix(diag(rep(10, 32))), | ||
# Z = cbind(mtcars$am, mtcars$vs), var_beta = 10000, nsave = 1000, nthin = 10, saveX = T) | ||
# | ||
# fitme2 = linreg_me(Y = mtcars$mpg, | ||
# X_mean = list(wt = mtcars$wt, cyl = mtcars$cyl), | ||
# X_prec = list(wt = diag(rep(10, 32)), cyl = diag(rep(10, 32))), | ||
# Z = cbind(mtcars$am, mtcars$vs), var_beta = 10000, nsave = 1000, nthin = 10, saveX = T) | ||
|
||
# | ||
# | ||
# summary(fit$posterior) | ||
# | ||
# summary(fitme$posterior) | ||
# | ||
# summary(fitme2$posterior) | ||
# str(fitme2$X_save) | ||
# plot(fitme2$posterior) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
#' @keywords internal | ||
"_PACKAGE" | ||
|
||
## usethis namespace: start | ||
## usethis namespace: end | ||
NULL | ||
|
||
|
||
#' Dataset, ozone exposure | ||
#' | ||
#' This is a subset of "ozone2" dataset in fields package, only containing data from monitoring station with no missing values. | ||
#' The 8-hour average (surface) ozone (from 9AM-4PM) measured in parts per billion (PPB) for 67 sites in the midwestern US over the period June 3,1987 through August 31, 1987, 89 days. | ||
#' | ||
#' @format A data frame with 5963 rows and 6 variables: | ||
#' \describe{ | ||
#' \item{date_id}{integer, 1 corresponds to 06/03/1987 and 89 corresponds to 08/31/1987} | ||
#' \item{date}{POIXct, date} | ||
#' \item{station_id}{character, station id} | ||
#' \item{coords_lon}{numeric, longitude of monitoring station} | ||
#' \item{coords_lat}{numeric, latitude of monitoring station} | ||
#' \item{ozone_ppb}{8-hour average surface ozone from 9am-4pm in parts per billion (PPB)} | ||
#' } | ||
"ozone" | ||
|
||
|
||
#' Dataset, simulated health data | ||
#' | ||
#' Simulated health data based on ozone exposures on 06/18/1987. | ||
#' | ||
#' @format A data frame with 3000 rows and 4 variables: | ||
#' \describe{ | ||
#' \item{y}{numeric, simulated health outcome} | ||
#' \item{coords_y_lon}{numeric, simulated health subject longitude} | ||
#' \item{coords_y_lat}{numeric, simulated health subject latitude,} | ||
#' \item{covariate}{numeric, covariate} | ||
#' } | ||
"health_sim" |
Oops, something went wrong.