-
Notifications
You must be signed in to change notification settings - Fork 586
Interface Thrust and CUDA
Samuel Audet edited this page May 31, 2014
·
1 revision
CUDA basically extends the C++ language and Thrust exploits that as a parallel algorithms template library. This makes JavaCPP the perfect tool to let users easily benefit from its processing power, on either GPUs or CPUs, entirely from within Java. It comes bundled with the CUDA Toolkit, which incidentally consists of the only additional requirement to get this working.
To illustrate how one could use JavaCPP to call template functions from Thrust, here is a port to Java of the example displayed on the main page of Thrust's website:
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
@Platform(include={"<thrust/host_vector.h>", "<thrust/device_vector.h>", "<thrust/generate.h>", "<thrust/sort.h>",
"<thrust/copy.h>", "<thrust/reduce.h>", "<thrust/functional.h>", "<algorithm>", "<cstdlib>"})
@Namespace("thrust")
public class ThrustTest {
static { Loader.load(); }
public static class IntGenerator extends FunctionPointer {
static { Loader.load(); }
protected IntGenerator() { allocate(); }
private native void allocate();
public native int call();
}
@Name("plus<int>")
public static class IntPlus extends Pointer {
static { Loader.load(); }
public IntPlus() { allocate(); }
private native void allocate();
public native @Name("operator()") int call(int x, int y);
}
@Name("host_vector<int>")
public static class IntHostVector extends Pointer {
static { Loader.load(); }
public IntHostVector() { allocate(0); }
public IntHostVector(long n) { allocate(n); }
public IntHostVector(IntDeviceVector v) { allocate(v); }
private native void allocate(long n);
private native void allocate(@ByRef IntDeviceVector v);
public IntPointer begin() { return data(); }
public IntPointer end() { return data().position((int)size()); }
public native IntPointer data();
public native long size();
public native void resize(long n);
}
@Name("device_ptr<int>")
public static class IntDevicePointer extends Pointer {
static { Loader.load(); }
public IntDevicePointer() { allocate(null); }
public IntDevicePointer(IntPointer ptr) { allocate(ptr); }
private native void allocate(IntPointer ptr);
public native IntPointer get();
}
@Name("device_vector<int>")
public static class IntDeviceVector extends Pointer {
static { Loader.load(); }
public IntDeviceVector() { allocate(0); }
public IntDeviceVector(long n) { allocate(n); }
public IntDeviceVector(IntHostVector v) { allocate(v); }
private native void allocate(long n);
private native void allocate(@ByRef IntHostVector v);
public IntDevicePointer begin() { return data(); }
public IntDevicePointer end() { return new IntDevicePointer(data().get().position((int)size())); }
public native @ByVal IntDevicePointer data();
public native long size();
public native void resize(long n);
}
public static native @MemberGetter @Namespace IntGenerator rand();
public static native void copy(@ByVal IntDevicePointer first, @ByVal IntDevicePointer last, IntPointer result);
public static native void generate(IntPointer first, IntPointer last, IntGenerator gen);
public static native void sort(@ByVal IntDevicePointer first, @ByVal IntDevicePointer last);
public static native int reduce(@ByVal IntDevicePointer first, @ByVal IntDevicePointer last, int init, @ByVal IntPlus binary_op);
public static void main(String[] args) {
// generate 32M random numbers serially
IntHostVector h_vec = new IntHostVector(32 << 20);
generate(h_vec.begin(), h_vec.end(), rand());
// transfer data to the device
IntDeviceVector d_vec = new IntDeviceVector(h_vec);
// sort data on the device (846M keys per second on GeForce GTX 480)
sort(d_vec.begin(), d_vec.end());
// transfer data back to host
copy(d_vec.begin(), d_vec.end(), h_vec.begin());
// compute sum on device
int x = reduce(d_vec.begin(), d_vec.end(), 0, new IntPlus());
}
}
We can get this compiled and running on a linux-x86_64
machine with these commands, or on any other supported platforms by modifying the -properties
option appropriately:
$ javac -cp javacpp.jar ThrustTest.java
$ java -jar javacpp.jar ThrustTest -properties linux-x86_64-cuda
$ java -cp javacpp.jar ThrustTest