-
Notifications
You must be signed in to change notification settings - Fork 792
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add IncrementalFixedLagSmootherExample
- Loading branch information
Showing
1 changed file
with
272 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
/* ---------------------------------------------------------------------------- | ||
* GTSAM Copyright 2010-2025, Georgia Tech Research Corporation, | ||
* Atlanta, Georgia 30332-0415 | ||
* All Rights Reserved | ||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
* See LICENSE for the license information | ||
* -------------------------------------------------------------------------- */ | ||
|
||
/** | ||
* @file IncrementalFixedLagExample.cpp | ||
* @brief Example of incremental fixed-lag smoother using real-world data. | ||
* @author Xiangcheng Hu ([email protected]), Frank Dellaert, Kevin Doherty | ||
* @date Janaury 15, 2025 | ||
* | ||
* Key objectives: | ||
* - Validate `IncrementalFixedLagSmoother` functionality with real-world data. | ||
* - Showcase how setting `findUnusedFactorSlots = true` addresses the issue #1452 in GTSAM, ensuring | ||
* that unused factor slots (nullptrs) are correctly released when old factors are marginalized. | ||
* | ||
* This example leverages pose measurements from a real scenario. The test data (named "IncrementalFixedLagSmootherTestData.txt") is | ||
* based on the corridor_day sequence from the FusionPortable dataset (https://fusionportable.github.io/dataset/fusionportable/). | ||
* - 1 prior factor derived from point cloud ICP alignment with a prior map. | ||
* - 199 relative pose factors derived from FAST-LIO2 odometry. | ||
* | ||
* Data Format (IncrementalFixedLagSmootherTestData.txt): | ||
* 1) PRIOR factor line: | ||
* @code | ||
* 0 timestamp key x y z roll pitch yaw cov_6x6 | ||
* @endcode | ||
* - "0" indicates PRIOR factor. | ||
* - "timestamp" is the observation time (in seconds). | ||
* - "key" is the integer ID for the Pose3 variable. | ||
* - (x, y, z, roll, pitch, yaw) define the pose. | ||
* - "cov_6x6" is the full 6x6 covariance matrix (row-major). | ||
* | ||
* 2) BETWEEN factor line: | ||
* @code | ||
* 1 timestamp key1 key2 x y z roll pitch yaw cov_6x6 | ||
* @endcode | ||
* - "1" indicates BETWEEN factor. | ||
* - "timestamp" is the observation time (in seconds). | ||
* - "key1" and "key2" are the integer IDs for the connected Pose3 variables. | ||
* - (x, y, z, roll, pitch, yaw) define the relative pose between these variables. | ||
* - "cov_6x6" is the full 6x6 covariance matrix (row-major). | ||
* | ||
* See also: | ||
* - GTSAM Issue #1452: https://github.com/borglab/gtsam/issues/1452 | ||
*/ | ||
|
||
// STL | ||
#include <iostream> | ||
#include <string> | ||
// GTSAM | ||
#include <gtsam/geometry/Pose3.h> | ||
#include <gtsam/nonlinear/ISAM2.h> | ||
#include <gtsam/nonlinear/Values.h> | ||
#include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||
#include <gtsam/slam/BetweenFactor.h> | ||
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h> | ||
#include <gtsam/inference/Symbol.h> | ||
#include <gtsam/slam/dataset.h> // for writeG2o | ||
|
||
using namespace std; | ||
using namespace gtsam; | ||
// Shorthand for symbols | ||
using symbol_shorthand::X; // Pose3 (x,y,z, roll, pitch, yaw) | ||
|
||
// Factor types | ||
enum FactorType { | ||
PRIOR = 0, | ||
BETWEEN = 1 | ||
}; | ||
|
||
typedef Eigen::Matrix<double, 6, 6> Matrix6; | ||
|
||
/* ************************************************************************* */ | ||
/** | ||
* @brief Read a 6x6 covariance matrix from an input string stream. | ||
* | ||
* @param iss Input string stream containing covariance entries. | ||
* @return 6x6 covariance matrix. | ||
*/ | ||
Matrix6 readCovarianceMatrix(istringstream &iss) { | ||
Matrix6 cov; | ||
for (int r = 0; r < 6; ++r) { | ||
for (int c = 0; c < 6; ++c) { | ||
iss >> cov(r, c); | ||
} | ||
} | ||
return cov; | ||
} | ||
|
||
/* ************************************************************************* */ | ||
/** | ||
* @brief Create a Pose3 object from individual pose parameters. | ||
* | ||
* @param x Translation in x | ||
* @param y Translation in y | ||
* @param z Translation in z | ||
* @param roll Rotation about x-axis | ||
* @param pitch Rotation about y-axis | ||
* @param yaw Rotation about z-axis | ||
* @return Constructed Pose3 object | ||
*/ | ||
Pose3 createPose(double x, double y, double z, double roll, double pitch, double yaw) { | ||
return Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z)); | ||
} | ||
|
||
/* ************************************************************************* */ | ||
/** | ||
* @brief Save the factor graph and estimates to a .g2o file (for visualization/debugging). | ||
* | ||
* @param graph The factor graph | ||
* @param estimate Current estimates of all variables | ||
* @param filename Base filename for saving | ||
* @param iterCount Iteration count to differentiate successive outputs | ||
*/ | ||
void saveG2oGraph(const NonlinearFactorGraph &graph, const Values &estimate, | ||
const string &filename, int iterCount) { | ||
// Create zero-padded iteration count | ||
string countStr = to_string(iterCount); | ||
string paddedCount = string(5 - countStr.length(), '0') + countStr; | ||
string fullFilename = filename + "_" + paddedCount + ".g2o"; | ||
// Write graph and estimates to g2o file | ||
writeG2o(graph, estimate, fullFilename); | ||
cout << "\nSaved graph to: " << fullFilename << endl; | ||
} | ||
|
||
/* ************************************************************************* */ | ||
/** | ||
* @brief Main function: Reads poses data from a text file and performs incremental fixed-lag smoothing. | ||
* | ||
* Data Flow: | ||
* 1) Parse lines from "IncrementalFixedLagSmootherTestData.txt". | ||
* 2) For each line: | ||
* - If it's a PRIOR factor, add a PriorFactor with a specified pose and covariance. | ||
* - If it's a BETWEEN factor, add a BetweenFactor with a relative pose and covariance. | ||
* - Insert new variables with initial guesses into the current solution if they don't exist. | ||
* 3) Update the fixed-lag smoother (with iSAM2 inside) to incrementally optimize and marginalize out old poses | ||
* beyond the specified lag window. | ||
* 4) Repeat until all lines are processed. | ||
* 5) Save the resulting factor graph and estimate of the last sliding window to a .g2o file. | ||
*/ | ||
int main() { | ||
string factor_loc = findExampleDataFile("issue1452.txt"); | ||
ifstream factor_file(factor_loc.c_str()); | ||
cout << "Reading factors data file: " << factor_loc << endl; | ||
|
||
// Configure ISAM2 parameters for the fixed-lag smoother | ||
ISAM2Params isamParameters; | ||
isamParameters.relinearizeThreshold = 0.1; | ||
isamParameters.relinearizeSkip = 1; | ||
|
||
// Important!!!!!! Key parameter to ensure old factors are released after marginalization | ||
isamParameters.findUnusedFactorSlots = true; | ||
// Initialize fixed-lag smoother with a 1-second lag window | ||
const double lag = 1.0; | ||
IncrementalFixedLagSmoother smoother(lag, isamParameters); | ||
// Print the iSAM2 parameters (optional) | ||
isamParameters.print(); | ||
|
||
// Containers for incremental updates | ||
NonlinearFactorGraph newFactors; | ||
Values newValues; | ||
FixedLagSmoother::KeyTimestampMap newTimestamps; | ||
// For tracking the latest estimate of all states in the sliding window | ||
Values currentEstimate; | ||
Pose3 lastPose; | ||
|
||
// Read and process each line in the factor graph file | ||
string line; | ||
int lineCount = 0; | ||
while (getline(factor_file, line)) { | ||
if (line.empty()) continue; // Skip empty lines | ||
cout << "\n======================== Processing line " << ++lineCount | ||
<< " =========================" << endl; | ||
|
||
istringstream iss(line); | ||
int factorType; | ||
iss >> factorType; | ||
// Check if the factor is PRIOR or BETWEEN | ||
if (factorType == PRIOR) { | ||
/** | ||
* Format: PRIOR factor | ||
* factor_type timestamp key pose(x y z roll pitch yaw) cov(6x6) | ||
*/ | ||
double timestamp; | ||
int key; | ||
double x, y, z, roll, pitch, yaw; | ||
iss >> timestamp >> key >> x >> y >> z >> roll >> pitch >> yaw; | ||
Pose3 pose = createPose(x, y, z, roll, pitch, yaw); | ||
Matrix6 cov = readCovarianceMatrix(iss); | ||
auto noise = noiseModel::Gaussian::Covariance(cov); | ||
// Add prior factor | ||
newFactors.addPrior(X(key), pose, noise); | ||
cout << "Add PRIOR factor on key " << key << endl; | ||
// Provide initial guess if not already in the graph | ||
if (!newValues.exists(X(key))) { | ||
newValues.insert(X(key), pose); | ||
newTimestamps[X(key)] = timestamp; | ||
} | ||
} else if (factorType == BETWEEN) { | ||
/** | ||
* Format: BETWEEN factor | ||
* factor_type timestamp key1 key2 pose(x y z roll pitch yaw) cov(6x6) | ||
*/ | ||
double timestamp; | ||
int key1, key2; | ||
iss >> timestamp >> key1 >> key2; | ||
double x1, y1, z1, roll1, pitch1, yaw1; | ||
iss >> x1 >> y1 >> z1 >> roll1 >> pitch1 >> yaw1; | ||
Pose3 relativePose = createPose(x1, y1, z1, roll1, pitch1, yaw1); | ||
Matrix6 cov = readCovarianceMatrix(iss); | ||
auto noise = noiseModel::Gaussian::Covariance(cov); | ||
// Add between factor | ||
newFactors.emplace_shared<BetweenFactor<Pose3>>(X(key1), X(key2), relativePose, noise); | ||
cout << "Add BETWEEN factor: " << key1 << " -> " << key2 << endl; | ||
// Provide an initial guess if needed | ||
if (!newValues.exists(X(key2))) { | ||
newValues.insert(X(key2), lastPose.compose(relativePose)); | ||
newTimestamps[X(key2)] = timestamp; | ||
} | ||
} else { | ||
cerr << "Unknown factor type: " << factorType << endl; | ||
continue; | ||
} | ||
|
||
// Print some intermediate statistics | ||
cout << "Before update - Graph has " << smoother.getFactors().size() | ||
<< " factors, " << smoother.getFactors().nrFactors() << " nr factors." << endl; | ||
cout << "New factors: " << newFactors.size() | ||
<< ", New values: " << newValues.size() << endl; | ||
|
||
// Attempt to update the smoother with new factors and values | ||
try { | ||
smoother.update(newFactors, newValues, newTimestamps); | ||
// Optional: Perform extra internal iterations if needed | ||
size_t maxExtraIterations = 3; | ||
for (size_t i = 1; i < maxExtraIterations; ++i) { | ||
smoother.update(); | ||
} | ||
// you may not get expected results if you use the gtsam version lower than 4.3 | ||
cout << "After update - Graph has " << smoother.getFactors().size() | ||
<< " factors, " << smoother.getFactors().nrFactors() << " nr factors." << endl; | ||
|
||
// Retrieve the latest estimate | ||
currentEstimate = smoother.calculateEstimate(); | ||
if (!currentEstimate.empty()) { | ||
// Update lastPose to the last key's estimate | ||
Key lastKey = currentEstimate.keys().back(); | ||
lastPose = currentEstimate.at<Pose3>(lastKey); | ||
} | ||
|
||
// Clear containers for the next iteration | ||
newFactors.resize(0); | ||
newValues.clear(); | ||
newTimestamps.clear(); | ||
} catch (const exception &e) { | ||
cerr << "Smoother update failed: " << e.what() << endl; | ||
} | ||
} | ||
|
||
// The results of the last sliding window are saved to a g2o file for visualization or further analysis. | ||
saveG2oGraph(smoother.getFactors(), currentEstimate, "isam", lineCount); | ||
factor_file.close(); | ||
|
||
return 0; | ||
} | ||
|