Skip to content

Commit

Permalink
add IncrementalFixedLagSmootherExample
Browse files Browse the repository at this point in the history
  • Loading branch information
JokerJohn committed Jan 18, 2025
1 parent 630ee11 commit a9da253
Showing 1 changed file with 272 additions and 0 deletions.
272 changes: 272 additions & 0 deletions examples/IncrementalFixedLagSmootherExample.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2025, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */

/**
* @file IncrementalFixedLagExample.cpp
* @brief Example of incremental fixed-lag smoother using real-world data.
* @author Xiangcheng Hu ([email protected]), Frank Dellaert, Kevin Doherty
* @date Janaury 15, 2025
*
* Key objectives:
* - Validate `IncrementalFixedLagSmoother` functionality with real-world data.
* - Showcase how setting `findUnusedFactorSlots = true` addresses the issue #1452 in GTSAM, ensuring
* that unused factor slots (nullptrs) are correctly released when old factors are marginalized.
*
* This example leverages pose measurements from a real scenario. The test data (named "IncrementalFixedLagSmootherTestData.txt") is
* based on the corridor_day sequence from the FusionPortable dataset (https://fusionportable.github.io/dataset/fusionportable/).
* - 1 prior factor derived from point cloud ICP alignment with a prior map.
* - 199 relative pose factors derived from FAST-LIO2 odometry.
*
* Data Format (IncrementalFixedLagSmootherTestData.txt):
* 1) PRIOR factor line:
* @code
* 0 timestamp key x y z roll pitch yaw cov_6x6
* @endcode
* - "0" indicates PRIOR factor.
* - "timestamp" is the observation time (in seconds).
* - "key" is the integer ID for the Pose3 variable.
* - (x, y, z, roll, pitch, yaw) define the pose.
* - "cov_6x6" is the full 6x6 covariance matrix (row-major).
*
* 2) BETWEEN factor line:
* @code
* 1 timestamp key1 key2 x y z roll pitch yaw cov_6x6
* @endcode
* - "1" indicates BETWEEN factor.
* - "timestamp" is the observation time (in seconds).
* - "key1" and "key2" are the integer IDs for the connected Pose3 variables.
* - (x, y, z, roll, pitch, yaw) define the relative pose between these variables.
* - "cov_6x6" is the full 6x6 covariance matrix (row-major).
*
* See also:
* - GTSAM Issue #1452: https://github.com/borglab/gtsam/issues/1452
*/

// STL
#include <iostream>
#include <string>
// GTSAM
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h> // for writeG2o

using namespace std;
using namespace gtsam;
// Shorthand for symbols
using symbol_shorthand::X; // Pose3 (x,y,z, roll, pitch, yaw)

// Factor types
enum FactorType {
PRIOR = 0,
BETWEEN = 1
};

typedef Eigen::Matrix<double, 6, 6> Matrix6;

/* ************************************************************************* */
/**
* @brief Read a 6x6 covariance matrix from an input string stream.
*
* @param iss Input string stream containing covariance entries.
* @return 6x6 covariance matrix.
*/
Matrix6 readCovarianceMatrix(istringstream &iss) {
Matrix6 cov;
for (int r = 0; r < 6; ++r) {
for (int c = 0; c < 6; ++c) {
iss >> cov(r, c);
}
}
return cov;
}

/* ************************************************************************* */
/**
* @brief Create a Pose3 object from individual pose parameters.
*
* @param x Translation in x
* @param y Translation in y
* @param z Translation in z
* @param roll Rotation about x-axis
* @param pitch Rotation about y-axis
* @param yaw Rotation about z-axis
* @return Constructed Pose3 object
*/
Pose3 createPose(double x, double y, double z, double roll, double pitch, double yaw) {
return Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
}

/* ************************************************************************* */
/**
* @brief Save the factor graph and estimates to a .g2o file (for visualization/debugging).
*
* @param graph The factor graph
* @param estimate Current estimates of all variables
* @param filename Base filename for saving
* @param iterCount Iteration count to differentiate successive outputs
*/
void saveG2oGraph(const NonlinearFactorGraph &graph, const Values &estimate,
const string &filename, int iterCount) {
// Create zero-padded iteration count
string countStr = to_string(iterCount);
string paddedCount = string(5 - countStr.length(), '0') + countStr;
string fullFilename = filename + "_" + paddedCount + ".g2o";
// Write graph and estimates to g2o file
writeG2o(graph, estimate, fullFilename);
cout << "\nSaved graph to: " << fullFilename << endl;
}

/* ************************************************************************* */
/**
* @brief Main function: Reads poses data from a text file and performs incremental fixed-lag smoothing.
*
* Data Flow:
* 1) Parse lines from "IncrementalFixedLagSmootherTestData.txt".
* 2) For each line:
* - If it's a PRIOR factor, add a PriorFactor with a specified pose and covariance.
* - If it's a BETWEEN factor, add a BetweenFactor with a relative pose and covariance.
* - Insert new variables with initial guesses into the current solution if they don't exist.
* 3) Update the fixed-lag smoother (with iSAM2 inside) to incrementally optimize and marginalize out old poses
* beyond the specified lag window.
* 4) Repeat until all lines are processed.
* 5) Save the resulting factor graph and estimate of the last sliding window to a .g2o file.
*/
int main() {
string factor_loc = findExampleDataFile("issue1452.txt");
ifstream factor_file(factor_loc.c_str());
cout << "Reading factors data file: " << factor_loc << endl;

// Configure ISAM2 parameters for the fixed-lag smoother
ISAM2Params isamParameters;
isamParameters.relinearizeThreshold = 0.1;
isamParameters.relinearizeSkip = 1;

// Important!!!!!! Key parameter to ensure old factors are released after marginalization
isamParameters.findUnusedFactorSlots = true;
// Initialize fixed-lag smoother with a 1-second lag window
const double lag = 1.0;
IncrementalFixedLagSmoother smoother(lag, isamParameters);
// Print the iSAM2 parameters (optional)
isamParameters.print();

// Containers for incremental updates
NonlinearFactorGraph newFactors;
Values newValues;
FixedLagSmoother::KeyTimestampMap newTimestamps;
// For tracking the latest estimate of all states in the sliding window
Values currentEstimate;
Pose3 lastPose;

// Read and process each line in the factor graph file
string line;
int lineCount = 0;
while (getline(factor_file, line)) {
if (line.empty()) continue; // Skip empty lines
cout << "\n======================== Processing line " << ++lineCount
<< " =========================" << endl;

istringstream iss(line);
int factorType;
iss >> factorType;
// Check if the factor is PRIOR or BETWEEN
if (factorType == PRIOR) {
/**
* Format: PRIOR factor
* factor_type timestamp key pose(x y z roll pitch yaw) cov(6x6)
*/
double timestamp;
int key;
double x, y, z, roll, pitch, yaw;
iss >> timestamp >> key >> x >> y >> z >> roll >> pitch >> yaw;
Pose3 pose = createPose(x, y, z, roll, pitch, yaw);
Matrix6 cov = readCovarianceMatrix(iss);
auto noise = noiseModel::Gaussian::Covariance(cov);
// Add prior factor
newFactors.addPrior(X(key), pose, noise);
cout << "Add PRIOR factor on key " << key << endl;
// Provide initial guess if not already in the graph
if (!newValues.exists(X(key))) {
newValues.insert(X(key), pose);
newTimestamps[X(key)] = timestamp;
}
} else if (factorType == BETWEEN) {
/**
* Format: BETWEEN factor
* factor_type timestamp key1 key2 pose(x y z roll pitch yaw) cov(6x6)
*/
double timestamp;
int key1, key2;
iss >> timestamp >> key1 >> key2;
double x1, y1, z1, roll1, pitch1, yaw1;
iss >> x1 >> y1 >> z1 >> roll1 >> pitch1 >> yaw1;
Pose3 relativePose = createPose(x1, y1, z1, roll1, pitch1, yaw1);
Matrix6 cov = readCovarianceMatrix(iss);
auto noise = noiseModel::Gaussian::Covariance(cov);
// Add between factor
newFactors.emplace_shared<BetweenFactor<Pose3>>(X(key1), X(key2), relativePose, noise);
cout << "Add BETWEEN factor: " << key1 << " -> " << key2 << endl;
// Provide an initial guess if needed
if (!newValues.exists(X(key2))) {
newValues.insert(X(key2), lastPose.compose(relativePose));
newTimestamps[X(key2)] = timestamp;
}
} else {
cerr << "Unknown factor type: " << factorType << endl;
continue;
}

// Print some intermediate statistics
cout << "Before update - Graph has " << smoother.getFactors().size()
<< " factors, " << smoother.getFactors().nrFactors() << " nr factors." << endl;
cout << "New factors: " << newFactors.size()
<< ", New values: " << newValues.size() << endl;

// Attempt to update the smoother with new factors and values
try {
smoother.update(newFactors, newValues, newTimestamps);
// Optional: Perform extra internal iterations if needed
size_t maxExtraIterations = 3;
for (size_t i = 1; i < maxExtraIterations; ++i) {
smoother.update();
}
// you may not get expected results if you use the gtsam version lower than 4.3
cout << "After update - Graph has " << smoother.getFactors().size()
<< " factors, " << smoother.getFactors().nrFactors() << " nr factors." << endl;

// Retrieve the latest estimate
currentEstimate = smoother.calculateEstimate();
if (!currentEstimate.empty()) {
// Update lastPose to the last key's estimate
Key lastKey = currentEstimate.keys().back();
lastPose = currentEstimate.at<Pose3>(lastKey);
}

// Clear containers for the next iteration
newFactors.resize(0);
newValues.clear();
newTimestamps.clear();
} catch (const exception &e) {
cerr << "Smoother update failed: " << e.what() << endl;
}
}

// The results of the last sliding window are saved to a g2o file for visualization or further analysis.
saveG2oGraph(smoother.getFactors(), currentEstimate, "isam", lineCount);
factor_file.close();

return 0;
}

0 comments on commit a9da253

Please sign in to comment.