Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

First version of the shiny app with summary of matches #1

Merged
merged 1 commit into from
Sep 15, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions frontend/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import datetime
import os
import json
from shiny import App, render, ui
import pandas as pd

app_ui = ui.page_fluid(
ui.page_navbar(
ui.nav_panel(
"Home",
ui.input_date_range("daterange", "", start="2024-09-13", end = datetime.date.today(), separator="-", min = "2024-09-13", max = "2024-12-31"),
ui.output_data_frame("matches_df"),
),
title="Indian Super League, 2024",
id="page",
bg="#F5F5F5",
),
)

def server(input, output, session):

@render.text
def value():
return f"{input.daterange()[0]} to {input.daterange()[1]}"

script_dir = os.path.dirname(os.path.abspath(__file__))
print(script_dir)
parent_dir = os.path.abspath(os.path.join(script_dir, os.pardir))
log_dir = os.path.join(parent_dir, 'logs')
data_dir = os.path.join(parent_dir, 'data')

@render.data_frame
def matches_df():

with open(os.path.join(data_dir, 'matches.txt'), encoding='utf-8') as f:
matches = json.loads(f.readlines()[-1])['matches']

df = []
for match in matches:
df.append({
'start_at': match['start_date'],
'end_at': match['end_date'],
'home_team': match['participants'][0]['name'],
'away_team': match['participants'][1]['name'],
'score': match['winning_margin'],
})
df = pd.DataFrame(df)
df['date'] = pd.to_datetime(df['start_at']).dt.strftime("%Y-%m-%d")
df['start_at'] = pd.to_datetime(df['start_at'])
df['end_at'] = pd.to_datetime(df['start_at'])
df['start_time'] = pd.to_datetime(df['start_at']).dt.strftime("%H:%M")
df['end_time'] = pd.to_datetime(df['end_at']).dt.strftime("%H:%M")
df['match_id'] = df.index + 1
print(df.head())

df_render = df.sort_values(by="start_at", ascending=False) \
.loc[(df['date'] >= str(input.daterange()[0])) & (df['date'] <= str(input.daterange()[1])),
["match_id", "date", "start_time", "end_time", "home_team", "away_team", "score"]] \
.rename(columns={
"match_id": "Match No.",
"date": "Date",
"start_time": "Start",
"end_time": "End",
"home_team": "Home Team",
"away_team": "Away Team",
"score": "Score"
})
return render.DataGrid(
df_render,
width="100%"
)

app = App(app_ui, server)
Loading