Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] OWConfusionMatrix: Output None when no data is selected #1653

Merged
merged 2 commits into from
Oct 13, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 39 additions & 37 deletions Orange/widgets/evaluate/owconfusionmatrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,44 +324,46 @@ def commit(self):
predicted = self.results.predicted[self.selected_learner[0]]
selected = [i for i, t in enumerate(zip(actual, predicted))
if t in indices]
row_indices = self.results.row_indices[selected]

extra = []
class_var = self.data.domain.class_var
metas = self.data.domain.metas

if self.append_predictions:
predicted = numpy.array(predicted[selected], dtype=object)
extra.append(predicted.reshape(-1, 1))
var = Orange.data.DiscreteVariable(
"{}({})".format(class_var.name, learner_name),
class_var.values
if selected:
row_indices = self.results.row_indices[selected]
extra = []
class_var = self.data.domain.class_var
metas = self.data.domain.metas

if self.append_predictions:
predicted = numpy.array(predicted[selected], dtype=object)
extra.append(predicted.reshape(-1, 1))
var = Orange.data.DiscreteVariable(
"{}({})".format(class_var.name, learner_name),
class_var.values
)
metas = metas + (var,)

if self.append_probabilities and \
self.results.probabilities is not None:
probs = self.results.probabilities[self.selected_learner[0],
selected]
extra.append(numpy.array(probs, dtype=object))
pvars = [Orange.data.ContinuousVariable("p({})".format(value))
for value in class_var.values]
metas = metas + tuple(pvars)

X = self.data.X[row_indices]
Y = self.data.Y[row_indices]
M = self.data.metas[row_indices]
row_ids = self.data.ids[row_indices]

M = numpy.hstack((M,) + tuple(extra))
domain = Orange.data.Domain(
self.data.domain.attributes,
self.data.domain.class_vars,
metas
)
metas = metas + (var,)

if self.append_probabilities and \
self.results.probabilities is not None:
probs = self.results.probabilities[self.selected_learner[0],
selected]
extra.append(numpy.array(probs, dtype=object))
pvars = [Orange.data.ContinuousVariable("p({})".format(value))
for value in class_var.values]
metas = metas + tuple(pvars)

X = self.data.X[row_indices]
Y = self.data.Y[row_indices]
M = self.data.metas[row_indices]
row_ids = self.data.ids[row_indices]

M = numpy.hstack((M,) + tuple(extra))
domain = Orange.data.Domain(
self.data.domain.attributes,
self.data.domain.class_vars,
metas
)
data = Orange.data.Table.from_numpy(domain, X, Y, M)
data.ids = row_ids
data.name = learner_name
data = Orange.data.Table.from_numpy(domain, X, Y, M)
data.ids = row_ids
data.name = learner_name
else:
data = None

else:
data = None
Expand Down
29 changes: 23 additions & 6 deletions Orange/widgets/evaluate/tests/test_owconfusionmatrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@
from Orange.widgets.evaluate.owconfusionmatrix import OWConfusionMatrix
from Orange.widgets.tests.base import WidgetTest

class TestOWClassificationTree(WidgetTest):

class TestOWConfusionMatrix(WidgetTest):
@classmethod
def setUpClass(cls):
super().setUpClass()
Expand All @@ -28,14 +29,30 @@ def test_selected_learner(self):
"""Check learner and model for various values of all parameters
when pruning parameters are not checked
"""
self.widget.set_results(self.results_2_iris)
self.send_signal("Evaluation Results", self.results_2_iris)
self.assertEqual(self.widget.selected_learner, [0])
self.widget.selected_learner[:] = [1]
self.widget.set_results(self.results_2_titanic)
self.send_signal("Evaluation Results", self.results_2_titanic)
self.widget.selected_learner[:] = [1]
self.widget.set_results(self.results_1_iris)
self.send_signal("Evaluation Results", self.results_1_iris)
self.widget.selected_learner[:] = [0]
self.widget.set_results(None)
self.widget.set_results(self.results_1_iris)
self.send_signal("Evaluation Results", None)
self.send_signal("Evaluation Results", self.results_1_iris)
self.widget.selected_learner[:] = [0]

def test_outputs(self):
self.send_signal("Evaluation Results", self.results_1_iris)

# check selected data output
self.assertIsNone(self.get_output("Selected Data"))

# select data instances
self.widget.select_correct()

# check selected data output
selected = self.get_output("Selected Data")
self.assertGreater(len(selected), 0)

# check output when data is removed
self.send_signal("Evaluation Results", None)
self.assertIsNone(self.get_output("Selected Data"))