-
-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3814 from PrimozGodec/clustering
[ENH] Unified clustering API
- Loading branch information
Showing
14 changed files
with
593 additions
and
328 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,3 +4,4 @@ | |
from .dbscan import * | ||
from .hierarchical import * | ||
from .kmeans import * | ||
from .louvain import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import numpy as np | ||
import scipy.sparse | ||
|
||
from Orange.data import Table, Instance | ||
from Orange.data.table import DomainTransformationError | ||
from Orange.misc.wrapper_meta import WrapperMeta | ||
from Orange.preprocess import Continuize, SklImpute | ||
|
||
|
||
class ClusteringModel: | ||
|
||
def __init__(self, projector): | ||
self.projector = projector | ||
self.domain = None | ||
self.original_domain = None | ||
self.labels = projector.labels_ | ||
|
||
def __call__(self, data): | ||
def fix_dim(x): | ||
return x[0] if one_d else x | ||
|
||
one_d = False | ||
if isinstance(data, np.ndarray): | ||
one_d = data.ndim == 1 | ||
prediction = self.predict(np.atleast_2d(data)) | ||
elif isinstance(data, scipy.sparse.csr.csr_matrix) or \ | ||
isinstance(data, scipy.sparse.csc.csc_matrix): | ||
prediction = self.predict(data) | ||
elif isinstance(data, (Table, Instance)): | ||
if isinstance(data, Instance): | ||
data = Table(data.domain, [data]) | ||
one_d = True | ||
if data.domain != self.domain: | ||
if self.original_domain.attributes != data.domain.attributes \ | ||
and data.X.size \ | ||
and not np.isnan(data.X).all(): | ||
data = data.transform(self.original_domain) | ||
if np.isnan(data.X).all(): | ||
raise DomainTransformationError( | ||
"domain transformation produced no defined values") | ||
data = data.transform(self.domain) | ||
prediction = self.predict(data.X) | ||
elif isinstance(data, (list, tuple)): | ||
if not isinstance(data[0], (list, tuple)): | ||
data = [data] | ||
one_d = True | ||
data = Table.from_list(self.original_domain, data) | ||
data = data.transform(self.domain) | ||
prediction = self.predict(data.X) | ||
else: | ||
raise TypeError("Unrecognized argument (instance of '{}')" | ||
.format(type(data).__name__)) | ||
|
||
return fix_dim(prediction) | ||
|
||
def predict(self, X): | ||
raise NotImplementedError( | ||
"This clustering algorithm does not support predicting.") | ||
|
||
|
||
class Clustering(metaclass=WrapperMeta): | ||
""" | ||
${skldoc} | ||
Additional Orange parameters | ||
preprocessors : list, optional (default = [Continuize(), SklImpute()]) | ||
An ordered list of preprocessors applied to data before | ||
training or testing. | ||
""" | ||
__wraps__ = None | ||
__returns__ = ClusteringModel | ||
preprocessors = [Continuize(), SklImpute()] | ||
|
||
def __init__(self, preprocessors, parameters): | ||
self.preprocessors = tuple(preprocessors or self.preprocessors) | ||
self.params = {k: v for k, v in parameters.items() | ||
if k not in ["self", "preprocessors", "__class__"]} | ||
|
||
def __call__(self, data): | ||
return self.get_model(data).labels | ||
|
||
def get_model(self, data): | ||
orig_domain = data.domain | ||
data = self.preprocess(data) | ||
model = self.fit_storage(data) | ||
model.domain = data.domain | ||
model.original_domain = orig_domain | ||
return model | ||
|
||
def fit_storage(self, data): | ||
# only data Table | ||
return self.fit(data.X) | ||
|
||
def fit(self, X: np.ndarray, y: np.ndarray = None): | ||
return self.__returns__(self.__wraps__(**self.params).fit(X)) | ||
|
||
def preprocess(self, data): | ||
for pp in self.preprocessors: | ||
data = pp(data) | ||
return data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,52 +1,22 @@ | ||
import sklearn.cluster as skl_cluster | ||
from numpy import ndarray, unique | ||
import sklearn.cluster | ||
|
||
from Orange.data import Table, DiscreteVariable, Domain, Instance | ||
from Orange.projection import SklProjector, Projection | ||
from Orange.clustering.clustering import Clustering | ||
from Orange.data import Table | ||
|
||
|
||
__all__ = ["DBSCAN"] | ||
|
||
class DBSCAN(SklProjector): | ||
__wraps__ = skl_cluster.DBSCAN | ||
|
||
class DBSCAN(Clustering): | ||
|
||
__wraps__ = sklearn.cluster.DBSCAN | ||
|
||
def __init__(self, eps=0.5, min_samples=5, metric='euclidean', | ||
algorithm='auto', leaf_size=30, p=None, | ||
preprocessors=None): | ||
super().__init__(preprocessors=preprocessors) | ||
self.params = vars() | ||
|
||
def fit(self, X, Y=None): | ||
proj = skl_cluster.DBSCAN(**self.params) | ||
self.X = X | ||
if isinstance(X, Table): | ||
proj = proj.fit(X.X,) | ||
else: | ||
proj = proj.fit(X, ) | ||
return DBSCANModel(proj) | ||
|
||
|
||
class DBSCANModel(Projection): | ||
def __init__(self, proj): | ||
super().__init__(proj=proj) | ||
|
||
def __call__(self, data): | ||
if isinstance(data, ndarray): | ||
return self.proj.fit_predict(data).reshape((len(data), 1)) | ||
|
||
if isinstance(data, Table): | ||
if data.domain is not self.pre_domain: | ||
data = data.transform(self.pre_domain) | ||
y = self.proj.fit_predict(data.X) | ||
vals, indices = unique(y, return_inverse=True) | ||
c = DiscreteVariable(name='Core sample index', | ||
values=[str(v) for v in vals]) | ||
domain = Domain([c]) | ||
return Table(domain, indices.reshape(len(y), 1)) | ||
|
||
elif isinstance(data, Instance): | ||
if data.domain is not self.pre_domain: | ||
data = Instance(self.pre_domain, data) | ||
# Instances-by-Instance classification is not defined; | ||
raise Exception("Core sample assignment is not supported " | ||
"for single instances.") | ||
algorithm='auto', leaf_size=30, p=None, preprocessors=None): | ||
super().__init__(preprocessors, vars()) | ||
|
||
|
||
if __name__ == "__main__": | ||
d = Table("iris") | ||
km = DBSCAN(preprocessors=None) | ||
clusters = km(d) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,72 +1,45 @@ | ||
import numpy as np | ||
import sklearn.cluster as skl_cluster | ||
from sklearn.metrics import silhouette_samples, silhouette_score | ||
import warnings | ||
|
||
from Orange.data import Table, DiscreteVariable, Domain, Instance | ||
from Orange.projection import SklProjector, Projection | ||
from Orange.distance import Euclidean | ||
import sklearn.cluster | ||
|
||
from Orange.clustering.clustering import Clustering, ClusteringModel | ||
from Orange.data import Table | ||
|
||
|
||
__all__ = ["KMeans"] | ||
|
||
SILHOUETTE_MAX_SAMPLES = 5000 | ||
|
||
class KMeans(SklProjector): | ||
__wraps__ = skl_cluster.KMeans | ||
class KMeansModel(ClusteringModel): | ||
|
||
def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300, | ||
tol=0.0001, random_state=None, preprocessors=None, | ||
compute_silhouette_score=False): | ||
super().__init__(preprocessors=preprocessors) | ||
self.params = vars() | ||
self._compute_silhouette = compute_silhouette_score | ||
def __init__(self, projector): | ||
super().__init__(projector) | ||
self.centroids = projector.cluster_centers_ | ||
self.k = projector.get_params()["n_clusters"] | ||
|
||
def fit(self, X, Y=None): | ||
proj = skl_cluster.KMeans(**self.params) | ||
proj = proj.fit(X, Y) | ||
proj.silhouette = np.nan | ||
try: | ||
if self._compute_silhouette and 2 <= proj.n_clusters < X.shape[0]: | ||
if X.shape[0] <= SILHOUETTE_MAX_SAMPLES: | ||
proj.silhouette_samples = \ | ||
silhouette_samples(X, proj.labels_) | ||
proj.silhouette = np.mean(proj.silhouette_samples) | ||
else: | ||
proj.silhouette_samples = None | ||
proj.silhouette = \ | ||
silhouette_score(X, proj.labels_, sample_size=SILHOUETTE_MAX_SAMPLES) | ||
except MemoryError: # Pairwise dist in silhouette fails for large data | ||
pass | ||
proj.inertia = proj.inertia_ / X.shape[0] | ||
cluster_dist = Euclidean(proj.cluster_centers_) | ||
proj.inter_cluster = np.mean(cluster_dist[np.triu_indices_from(cluster_dist, 1)]) | ||
return KMeansModel(proj, self.preprocessors) | ||
def predict(self, X): | ||
return self.projector.predict(X) | ||
|
||
|
||
class KMeansModel(Projection): | ||
def __init__(self, proj, preprocessors=None): | ||
super().__init__(proj=proj) | ||
self.k = self.proj.get_params()["n_clusters"] | ||
self.centroids = self.proj.cluster_centers_ | ||
class KMeans(Clustering): | ||
|
||
def __call__(self, data): | ||
if isinstance(data, Table): | ||
if data.domain is not self.pre_domain: | ||
data = data.transform(self.pre_domain) | ||
c = DiscreteVariable(name='Cluster id', | ||
values=[str(i) for i in range(self.k)]) | ||
domain = Domain([c]) | ||
return Table( | ||
domain, | ||
self.proj.predict(data.X).astype(int).reshape((len(data), 1))) | ||
elif isinstance(data, Instance): | ||
if data.domain is not self.pre_domain: | ||
data = Instance(self.pre_domain, data) | ||
c = DiscreteVariable(name='Cluster id', | ||
values=[str(i) for i in range(self.k)]) | ||
domain = Domain([c]) | ||
return Table( | ||
domain, | ||
np.atleast_2d(self.proj.predict(data._x.reshape(1, -1))).astype(int)) | ||
else: | ||
return self.proj.predict(data).reshape((data.shape[0], 1)) | ||
__wraps__ = sklearn.cluster.KMeans | ||
__returns__ = KMeansModel | ||
|
||
def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300, | ||
tol=0.0001, random_state=None, preprocessors=None, | ||
compute_silhouette_score=None): | ||
if compute_silhouette_score is not None: | ||
warnings.warn( | ||
"compute_silhouette_score is deprecated. Please use " | ||
"sklearn.metrics.silhouette_score to compute silhouettes.", | ||
DeprecationWarning) | ||
super().__init__( | ||
preprocessors, {k: v for k, v in vars().items() | ||
if k != "compute_silhouette_score"}) | ||
|
||
|
||
if __name__ == "__main__": | ||
d = Table("iris") | ||
km = KMeans(preprocessors=None, n_clusters=3) | ||
clusters = km(d) | ||
model = km.fit_storage(d) |
Oops, something went wrong.