Skip to content
forked from BerriAI/litellm

Python SDK, Proxy Server (LLM Gateway) to call 100+ LLM APIs in OpenAI format - [Bedrock, Azure, OpenAI, VertexAI, Cohere, Anthropic, Sagemaker, HuggingFace, Replicate, Groq]

License

Notifications You must be signed in to change notification settings

autotelic/litellm

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš… LiteLLM

Deploy to Render Deploy on Railway

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]

LiteLLM manages:

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
  • Set Budgets & Rate limits per project, api key, model LiteLLM Proxy Server (LLM Gateway)

Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers

🚨 Stable Release: Use docker images with the -stable tag. These have undergone 12 hour load tests, before being published.

Support for more providers. Missing a provider or LLM Platform, raise a feature request.

Usage (Docs)

Important

LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here
LiteLLM v1.40.14+ now requires pydantic>=2.0.0. No changes required.

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["COHERE_API_KEY"] = "your-cohere-key"

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Call any model supported by a provider, with model=<provider_name>/<model_name>. There might be provider-specific details here, so refer to provider docs for more information

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="gpt-3.5-turbo", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, DynamoDB, s3 Buckets, Helicone, Promptlayer, Traceloop, Athina, Slack, MLflow

from litellm import completion

## set env variables for logging tools
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["lunary", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi πŸ‘‹ - i'm openai"}])

LiteLLM Proxy Server (LLM Gateway) - (Docs)

Track spend + Load Balance across multiple projects

Hosted Proxy (Preview)

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

πŸ“– Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Step 2: Make ChatCompletions Request to Proxy

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

Connect the proxy with a Postgres DB to create proxy keys

# Get the code
git clone https://github.com/BerriAI/litellm

# Go to folder
cd litellm

# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env

# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommned - https://1password.com/password-generator/ 
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' > .env

source .env

# Start
docker-compose up

UI on /ui on your proxy server ui_3

Set budgets and rate limits across multiple projects POST /key/generate

Request

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "[email protected]", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai βœ… βœ… βœ… βœ… βœ… βœ…
azure βœ… βœ… βœ… βœ… βœ… βœ…
aws - sagemaker βœ… βœ… βœ… βœ… βœ…
aws - bedrock βœ… βœ… βœ… βœ… βœ…
google - vertex_ai βœ… βœ… βœ… βœ… βœ… βœ…
google - palm βœ… βœ… βœ… βœ…
google AI Studio - gemini βœ… βœ… βœ… βœ…
mistral ai api βœ… βœ… βœ… βœ… βœ…
cloudflare AI Workers βœ… βœ… βœ… βœ…
cohere βœ… βœ… βœ… βœ… βœ…
anthropic βœ… βœ… βœ… βœ…
empower βœ… βœ… βœ… βœ…
huggingface βœ… βœ… βœ… βœ… βœ…
replicate βœ… βœ… βœ… βœ…
together_ai βœ… βœ… βœ… βœ…
openrouter βœ… βœ… βœ… βœ…
ai21 βœ… βœ… βœ… βœ…
baseten βœ… βœ… βœ… βœ…
vllm βœ… βœ… βœ… βœ…
nlp_cloud βœ… βœ… βœ… βœ…
aleph alpha βœ… βœ… βœ… βœ…
petals βœ… βœ… βœ… βœ…
ollama βœ… βœ… βœ… βœ… βœ…
deepinfra βœ… βœ… βœ… βœ…
perplexity-ai βœ… βœ… βœ… βœ…
Groq AI βœ… βœ… βœ… βœ…
Deepseek βœ… βœ… βœ… βœ…
anyscale βœ… βœ… βœ… βœ…
IBM - watsonx.ai βœ… βœ… βœ… βœ… βœ…
voyage ai βœ…
xinference [Xorbits Inference] βœ…
FriendliAI βœ… βœ… βœ… βœ…

Read the Docs

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install -E extra_proxy -E proxy

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .

Step 4: Submit a PR with your changes! πŸš€

  • push your fork to your GitHub repo
  • submit a PR from there

Building LiteLLM Docker Image

Follow these instructions if you want to build / run the LiteLLM Docker Image yourself.

Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Build the Docker Image

Build using Dockerfile.non_root

docker build -f docker/Dockerfile.non_root -t litellm_test_image .

Step 3: Run the Docker Image

Make sure config.yaml is present in the root directory. This is your litellm proxy config file.

docker run \
    -v $(pwd)/proxy_config.yaml:/app/config.yaml \
    -e DATABASE_URL="postgresql://xxxxxxxx" \
    -e LITELLM_MASTER_KEY="sk-1234" \
    -p 4000:4000 \
    litellm_test_image \
    --config /app/config.yaml --detailed_debug

Enterprise

For companies that need better security, user management and professional support

Talk to founders

This covers:

  • βœ… Features under the LiteLLM Commercial License:
  • βœ… Feature Prioritization
  • βœ… Custom Integrations
  • βœ… Professional Support - Dedicated discord + slack
  • βœ… Custom SLAs
  • βœ… Secure access with Single Sign-On

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors

About

Python SDK, Proxy Server (LLM Gateway) to call 100+ LLM APIs in OpenAI format - [Bedrock, Azure, OpenAI, VertexAI, Cohere, Anthropic, Sagemaker, HuggingFace, Replicate, Groq]

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.5%
  • TypeScript 5.4%
  • HTML 1.0%
  • JavaScript 0.1%
  • Dockerfile 0.0%
  • Shell 0.0%