Skip to content

Commit

Permalink
style: format
Browse files Browse the repository at this point in the history
  • Loading branch information
benjamc committed Jun 7, 2024
1 parent 4e243b7 commit 51313af
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 21 deletions.
1 change: 1 addition & 0 deletions carps/analysis/gather_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,6 +285,7 @@ def convert_mixed_types_to_str(logs: pd.DataFrame, logger=None) -> pd.DataFrame:
logs[c] = logs[c].astype("str")
return logs


def load_set(paths: list[str], set_id: str = "unknown") -> tuple[pd.DataFrame, pd.DataFrame]:
logs = []
for p in paths:
Expand Down
35 changes: 14 additions & 21 deletions carps/analysis/plot_relative_perf.py
Original file line number Diff line number Diff line change
@@ -1,46 +1,39 @@
from __future__ import annotations

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

from carps.analysis.utils import savefig
from carps.analysis.gather_data import process_logs
import seaborn as sns


def norm_by_opt(df: pd.DataFrame, optimizer_id: str) -> pd.DataFrame:
df_new = []
for gid, gdf in df.groupby(by=["problem_id", "seed"]):
reference = gdf[gdf["optimizer_id"]==optimizer_id]["trial_value__cost"]
gdf["trial_value__cost_normopt"] = gdf.groupby("optimizer_id")["trial_value__cost"].transform(lambda x: x / reference)
for _gid, gdf in df.groupby(by=["problem_id", "seed"]):
reference = gdf[gdf["optimizer_id"] == optimizer_id]["trial_value__cost"]
gdf["trial_value__cost_normopt"] = gdf.groupby("optimizer_id")["trial_value__cost"].transform(
lambda x: x / reference
)
df_new.append(gdf)
df = pd.concat(df_new).reset_index(drop=True)


# df["trial_value_cost_normopt"] = df.groupby("problem_id").apply(_norm_by_opt)
df["trial_value__cost_inc_normopt"] = df.groupby(by=["problem_id", "optimizer_id", "seed"])["trial_value__cost_normopt"].transform("cummin")
df["trial_value__cost_inc_normopt"] = df.groupby(by=["problem_id", "optimizer_id", "seed"])[
"trial_value__cost_normopt"
].transform("cummin")
return df






if __name__=="__main__":
df = pd.read_parquet("/scratch/hpc-prf-intexml/cbenjamins/repos/CARP-S-Experiments/lib/CARP-S/runs/RandomSearch/MFPBench/logs.parquet")
if __name__ == "__main__":
df = pd.read_parquet(
"/scratch/hpc-prf-intexml/cbenjamins/repos/CARP-S-Experiments/lib/CARP-S/runs/RandomSearch/MFPBench/logs.parquet"
)

df_new = df.copy()
df_new["optimizer_id"] = "HeheOpt"
df_new["trial_value__cost"] -= 0.1
df = pd.concat([df, df_new]).reset_index(drop=True)

fig, ax = plt.subplots(figsize=(6,4))
fig, ax = plt.subplots(figsize=(6, 4))
normalize_by_opt = "RandomSearch"
df = norm_by_opt(df, "RandomSearch")

sns.lineplot()





0 comments on commit 51313af

Please sign in to comment.