Skip to content

aswitwicka/literature_pollinators

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 

Repository files navigation

Table of contents

Introduction

Literature on the impacts of various groups of pesticides on insect pollinators. General trends in population declines

Reviews on pollinators and neonicotinoid insecticides

  • Bass, C., Field, L.M., 2018. Neonicotinoids. Current Biology 28, R772–R773. https://doi.org/10.1016/j.cub.2018.05.061
  • Berenbaum, M.R., Johnson, R.M., 2015. Xenobiotic detoxification pathways in honey bees. Current Opinion in Insect Science 10, 51–58. https://doi.org/10.1016/j.cois.2015.03.005
  • Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E., 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354. https://doi.org/10.1126/science.1127863
  • Blacquière, T., Smagghe, G., van Gestel, C.A.M., Mommaerts, V., 2012. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0863-x
  • Brown, M.J.F., Dicks, L.V., Paxton, R.J., Baldock, K.C.R., Barron, A.B., Chauzat, M.-P., Freitas, B.M., Goulson, D., Jepsen, S., Kremen, C., Li, J., Neumann, P., Pattemore, D.E., Potts, S.G., Schweiger, O., Seymour, C.L., Stout, J.C., 2016. A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ 4, e2249. https://doi.org/10.7717/peerj.2249
  • Cameron, S.A., Sadd, B.M., 2020. Global trends in bumble bee health. Annual Review of Entomology 65, null. https://doi.org/10.1146/annurev-ento-011118-111847
  • Casida, J.E., 2018. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annual Review of Entomology 63, 125–144. https://doi.org/10.1146/annurev-ento-020117-043042
  • Carreck, N.L., 2017. A beekeeper’s perspective on the neonicotinoid ban. Pest Management Science 73, 1295–1298. https://doi.org/10.1002/ps.4489
  • Cressey, D., 2017. The bitter battle over the world’s most popular insecticides. Nature 551, 156–158. https://doi.org/10.1038/551156a
  • Cressey, D., 2015. Bee studies stir up pesticide debate. Nature 520, 416–416. https://doi.org/10.1038/520416a
  • Cressey, D., 2013. Europe debates risk to bees. Nature 496, 408–408. https://doi.org/10.1038/496408a
  • Cullen, M.G., Thompson, L.J., Carolan, J.C., Stout, J.C., Stanley, D.A., 2019. Fungicides, herbicides and bees: a systematic review of existing research and methods. PLOS ONE 14, e0225743. https://doi.org/10.1371/journal.pone.0225743
  • Dani, J.A., Bertrand, D., 2007. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology 47, 699–729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214
  • Desneux, N., Decourtye, A., Delpuech, J.-M., 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
  • Dicks, L.V., Viana, B., Bommarco, R., Brosi, B., Arizmendi, M. del C., Cunningham, S.A., Galetto, L., Hill, R., Lopes, A.V., Pires, C., Taki, H., Potts, S.G., 2016. Ten policies for pollinators. Science 354, 975–976. https://doi.org/10.1126/science.aai9226
  • Dupuis, J., Louis, T., Gauthier, M., Raymond, V., 2012. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions. Neuroscience & Biobehavioral Reviews 36, 1553–1564. https://doi.org/10.1016/j.neubiorev.2012.04.003
  • Eisenstein, M., 2015. Pesticides: seeking answers amid a toxic debate. Nature 521, S52–S55. https://doi.org/10.1038/521S52a
  • Feyereisen, R., 2012. Insect CYP genes and P450 enzymes. Insect Molecular Biology and Biochemistry 236–316. https://doi.org/10.1016/B978-0-12-384747-8.10008-X
  • Feyereisen, R., 2015. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Management Science 71, 793–800. https://doi.org/10.1002/ps.3895
  • Feyereisen, R., 2018. Bee P450s take the sting out of cyanoamidine neonicotinoids. Current Biology 28, R560–R562. https://doi.org/10.1016/j.cub.2018.03.013
  • ffrench-Constant, R.H., Daborn, P.J., Goff, G.L., 2004. The genetics and genomics of insecticide resistance. Trends in Genetics 20, 163–170. https://doi.org/10.1016/j.tig.2004.01.003
  • Godfray, H.C.J., Blacquière, T., Field, L.M., Hails, R.S., Petrokofsky, G., Potts Simon G., Raine Nigel E., Vanbergen Adam J., McLean Angela R., 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences 281, 20140558. https://doi.org/10.1098/rspb.2014.0558
  • Godfray, H.C.J., Blacquière, T., Field, L.M., Hails, R.S., Potts, S.G., Raine, N.E., Vanbergen, A.J., McLean, A.R., 2015. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences 282, 20151821. https://doi.org/10.1098/rspb.2015.1821
  • Goulson, D., Lye, G.C., Darvill, B., 2008. Decline and conservation of bumble bees. Annual Review of Entomology 53, 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454
  • Goulson, D., 2013. An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50, 977–987. https://doi.org/10.1111/1365-2664.12111
  • Goulson, D., Nicholls, E., Botias, C., Rotheray, E.L., 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957–1255957. https://doi.org/10.1126/science.1255957
  • Goulson, D., 2019. The insect apocalypse, and why it matters. Current Biology 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069
  • Gradish, A.E., van der Steen, J., Scott-Dupree, C.D., Cabrera, A.R., Cutler, G.C., Goulson, D., Klein, O., Lehmann, D.M., Lückmann, J., O’Neill, B., Raine, N.E., Sharma, B., Thompson, H., 2019. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumblebees (Hymenoptera: Apidae): Implications for risk assessments. Environmental Entomology 48, 12–21. https://doi.org/10.1093/ee/nvy168
  • Grozinger, C.M., Robinson, G.E., 2015. The power and promise of applying genomics to honey bee health. Current Opinion in Insect Science 10, 124–132. https://doi.org/10.1016/j.cois.2015.03.007
  • Grozinger, C.M., Zayed, A., 2020. Improving bee health through genomics. Nature Reviews Genetics 1–15. https://doi.org/10.1038/s41576-020-0216-1
  • Grünewald, B., Siefert, P., 2019. Acetylcholine and its receptors in honeybees: involvement in development and impairments by neonicotinoids. Insects 10, 420. https://doi.org/10.3390/insects10120420
  • Gonzalez-Varo, J.P., Biesmeijer, J.C., Bommarco, R., Potts, S.G., Schweiger, O., Smith, H.G., Steffan-Dewenter, I., Szentgyörgyi, H., Woyciechowski, M., Vilà, M., 2013. Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology & Evolution 28, 524–530. https://doi.org/10.1016/j.tree.2013.05.008
  • Gross, M., 2018. Bee worries beyond neonicotinoids. Current Biology 28, R1121–R1123. https://doi.org/10.1016/j.cub.2018.09.045
  • Gross, M., 2014. Systemic pesticide concerns extend beyond the bees. Current Biology 24, R717–R720. https://doi.org/10.1016/j.cub.2014.07.071
  • Hawkins, N.J., Bass, C., Dixon, A., Neve, P., 2019. The evolutionary origins of pesticide resistance. Biological Reviews 94, 135–155. https://doi.org/10.1111/BRV.12440
  • Ihara, M., Matsuda, K., 2018. Neonicotinoids: Molecular mechanisms of action, insights into resistance and impact on pollinators. Current Opinion in Insect Science 30, 86–92. https://doi.org/10.1016/J.COIS.2018.09.009
  • Jeschke, P., Nauen, R., 2008. Neonicotinoids - from zero to hero in insecticide chemistry. Pest Management Science 64, 1084–1098. https://doi.org/10.1002/ps.1631
  • Jeschke, P., Nauen, R., Schindler, M., Elbert, A., 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry 59, 2897–2908. https://doi.org/10.1021/jf101303g
  • Johnson, R.M., 2015. Honey bee toxicology. Annual Review of Entomology 60, 415–434. https://doi.org/10.1146/annurev-ento-011613-162005
  • Kulhanek, K., Steinhauer, N., Rennich, K., Caron, D.M., Sagili, R.R., Pettis, J.S., Ellis, J.D., Wilson, M.E., Wilkes, J.T., Tarpy, D.R., Rose, R., Lee, K., Rangel, J., vanEngelsdorp, D., 2017. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. Journal of Apicultural Research 56, 328–340. https://doi.org/10.1080/00218839.2017.1344496
  • Grozinger, C.M., Flenniken, M.L., 2019. Bee viruses: ecology, pathogenicity, and impacts. Annual Review of Entomology 64, 205–226. https://doi.org/10.1146/annurev-ento-011118-111942
  • López-Uribe, M.M., Ricigliano, V.A., Simone-Finstrom, M., 2020. Defining pollinator health: assessing bee ecological, genetic, and physiological factors at the individual, colony, and population levels. Annual Review of Animal Biosciences 8, null. https://doi.org/10.1146/annurev-animal-020518-115045
  • Human, H., Brodschneider, R., Dietemann, V., Dively, G., Ellis, J.D., Forsgren, E., et al. 2013. Miscellaneous standard methods for Apis mellifera research. Journal of Apicultural Research 52, 1–53. https://doi.org/10.3896/IBRA.1.52.4.10
  • Lundin, O., Rundlöf, M., Smith, H.G., Fries, I., Bommarco, R., 2015. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLOS ONE 10, e0136928. https://doi.org/10.1371/journal.pone.0136928
  • Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B., 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences 22, 573–580. https://doi.org/10.1016/S0165-6147(00)01820-4
  • Matsuda, K., Kanaoka, S., Akamatsu, M., Sattelle, D.B., 2009. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 76, 1–10. https://doi.org/10.1124/mol.109.055186
  • Matsuda, K., Ihara, M., Sattelle, D.B., 2020. Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annual Review of Pharmacology and Toxicology 60, 241–255. https://doi.org/10.1146/annurev-pharmtox-010818-021747
  • A. M. Milner, I. L. Boyd. 2017. Toward pesticidovigilance. https://doi.org/10.1126/science.aan2683
  • Moreira-Hernández, J.I., Muchhala, N., 2019. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annual Review of Ecology, Evolution, and Systematics 50, null. https://doi.org/10.1146/annurev-ecolsys-110218-024804
  • Ollerton, J., 2017. Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919
  • Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E., 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007
  • Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., 2016. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588
  • Rader, R., Cunningham, S.A., Howlett, B.G., Inouye, D.W., 2020. Non-bee insects as visitors and pollinators of crops: biology, ecology and management. Annual Review of Entomology 65, null. https://doi.org/10.1146/annurev-ento-011019-025055
  • Ratnieks, F.L.W., Balfour, N.J., Carreck, N.L., 2018. Review: Have suitable experimental designs been used to determine the effects of neonicotinoid insecticides on bee colony performance in the field? Journal of Apicultural Research 57, 586–592. https://doi.org/10.1080/00218839.2018.1484055
  • Sheets, L.P., Li, A.A., Minnema, D.J., Collier, R.H., Creek, M.R., Peffer, R.C., 2016. A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit Rev Toxicol 46, 153–190. https://doi.org/10.3109/10408444.2015.1090948
  • Stoner, K.A., 2016. Current pesticide risk assessment protocols do not adequately address differences between honey bees (Apis mellifera) and bumblebees (Bombus spp.). Frontiers in Environmental Science 4. https://doi.org/10.3389/fenvs.2016.00079
  • Straub, L., Strobl, V., Neumann, P., 2020. The need for an evolutionary approach to ecotoxicology. Nature Ecology & Evolution 1–1. https://doi.org/10.1038/s41559-020-1194-6
  • Tomizawa, M., Casida, J.E., 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology 48, 339–364. https://doi.org/10.1146/annurev.ento.48.091801.112731
  • Topping, C.J., Aldrich, A., Berny, P., 2020. Overhaul environmental risk assessment for pesticides. Science 367, 360–363. https://doi.org/10.1126/science.aay1144
  • van der Sluijs, J.P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J.-M., Belzunces, L.P., 2013. Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability 5, 293–305. https://doi.org/10.1016/j.cosust.2013.05.007
  • Van Leeuwen, T., Dermauw, W., 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology 61, 475–498. https://doi.org/10.1146/annurev-ento-010715-023907
  • Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.-R., Yuan, Z., Martínez, M.-A., 2018. Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annual Review of Pharmacology and Toxicology 58, 471–507. https://doi.org/10.1146/annurev-pharmtox-010617-052429
  • Wood, T.J., Goulson, D., 2017. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environmental Science and Pollution Research 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x
  • Wright, G.A., Nicolson, S.W., Shafir, S., 2018. Nutritional physiology and ecology of honey bees. Annual Review of Entomology 63, 327–344. https://doi.org/10.1146/annurev-ento-020117-043423

Highly cited

  • Baron, G.L., Jansen, V.A.A., Brown, M.J.F., Raine, N.E., 2017. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology & Evolution 1, 1308–1316. https://doi.org/10.1038/s41559-017-0260-1
  • Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E., 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354. https://doi.org/10.1126/science.1127863
  • Bonmatin, J.-M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D., Noome, D.A., Simon-Delso, N., Tapparo, A., 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7
  • Bryden, J., Gill, R.J., Mitton, R.A.A., Raine, N.E., Jansen, V.A.A., 2013. Chronic sublethal stress causes bee colony failure. Ecology Letters 16, 1463–1469. https://doi.org/10.1111/ele.12188
  • Cresswell, J.E., 2011. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20, 149–157. https://doi.org/10.1007/s10646-010-0566-0
  • Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F., 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences 110, 18466–71. https://doi.org/10.1073/pnas.1314923110
  • Dively, G.P., Embrey, M.S., Kamel, A., Hawthorne, D.J., Pettis, J.S., 2015. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLOS ONE 10, e0118748. https://doi.org/10.1371/journal.pone.0118748
  • Feltham, H., Park, K., Goulson, D., 2014. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7
  • Fournier-Level, A., Good, R.T., Wilcox, S.A., Rane, R.V., Schiffer, M., Chen, W., Battlay, P., Perry, T., Batterham, P., Hoffmann, A.A., Robin, C., 2019. The spread of resistance to imidacloprid is restricted by thermotolerance in natural populations of Drosophila melanogaster. Nature Ecology & Evolution 1. https://doi.org/10.1038/s41559-019-0837-y
  • Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., et al., 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200
  • Gill, R.J., Ramos-Rodriguez, O., Raine, N.E., 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108. https://doi.org/10.1038/nature11585
  • Godfray, H.C.J., Blacquière, T., Field, L.M., Hails, R.S., Petrokofsky, G., Potts Simon G., Raine Nigel E., Vanbergen Adam J., McLean Angela R., 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences 281, 20140558. https://doi.org/10.1098/rspb.2014.0558
  • Goulson, D., 2013. An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50, 977–987. https://doi.org/10.1111/1365-2664.12111
  • Hardstone, M.C., Scott, J.G., 2010. Is Apis mellifera more sensitive to insecticides than other insects? Pest Management Science 66, 1171–1180. https://doi.org/10.1002/ps.2001
  • Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A., 2012. A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350. https://doi.org/10.1126/science.1215039
  • Henry, M., Cerrutti, N., Aupinel, P., Decourtye, A., Gayrard, M., Odoux, J.-F., Pissard, A., Rüger, C., Bretagnolle, V., 2015. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proceedings of the Royal Society B: Biological Sciences 282. https://doi.org/10.1098/rspb.2015.2110
  • Jones, A., Harrington, P., Turnbull, G., 2014. Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years. Pest Management Science 70, 1780–1784. https://doi.org/10.1002/ps.3836
  • Kessler, S.C., Tiedeken, E.J., Simcock, K.L., Derveau, S., Mitchell, J., Softley, S., Radcliffe, A., Stout, J.C., Wright, G.A., 2015. Bees prefer foods containing neonicotinoid pesticides. Nature 521, 74–76. https://doi.org/10.1038/nature14414
  • Kerr, J.T., Pindar, A., Galpern, P., Packer, L., Potts, S.G., et al., 2015. Climate change impacts on bumblebees converge across continents. Science 349, 177–80. https://doi.org/10.1126/science.aaa7031
  • Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M., et al., 2015. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications 6, 7414. https://doi.org/10.1038/ncomms8414
  • Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., Given, K., 2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLOS ONE 7, e29268. https://doi.org/10.1371/journal.pone.0029268
  • Laycock, I., Lenthall, K.M., Barratt, A.T., Cresswell, J.E., 2012. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21, 1937–1945. https://doi.org/10.1007/s10646-012-0927-y
  • Lundin, O., Rundlöf, M., Smith, H.G., Fries, I., Bommarco, R., 2015. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLOS ONE 10, e0136928. https://doi.org/10.1371/journal.pone.0136928
  • Manjon, C., Troczka, B.J., Zaworra, M., Beadle, K., Randall, E., Hertlein, G., Singh, K.S., Zimmer, C.T., Homem, R.A., Lueke, B., Reid, R., Kor, L., Kohler, M., Benting, J., Williamson, M.S., Davies, T.G.E., Field, L.M., Bass, C., Nauen, R., 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Current Biology 28, 1137-1143.e5. https://doi.org/10.1016/J.CUB.2018.02.045
  • Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B., 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences 22, 573–580. https://doi.org/10.1016/S0165-6147(00)01820-4
  • Mitchell, E.A.D., Mulhauser, B., Mulot, M., Mutabazi, A., Glauser, G., Aebi, A., 2017. A worldwide survey of neonicotinoids in honey. Science 358, 109–111. https://doi.org/10.1126/science.aan3684
  • Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G., 2009. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207. https://doi.org/10.1007/s10646-009-0406-2
  • Ollerton, J., Erenler, H., Edwards, M., Crockett, R., 2014. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259
  • Osterman, J., Wintermantel, D., Locke, B., Jonsson, O., Semberg, E., Onorati, P., Forsgren, E., Rosenkranz, P., Rahbek-Pedersen, T., Bommarco, R., Smith, H.G., Rundlöf, M., de Miranda, J.R., 2019. Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature Communications 10, 692. https://doi.org/10.1038/s41467-019-08523-4
  • Palmer, M.J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G.A., Connolly, C.N., 2013. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications 4, 1634. https://doi.org/10.1038/ncomms2648
  • Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., 2016. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588
  • Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A., Isaac, N.J.B., 2019. Widespread losses of pollinating insects in Britain. Nature Communications 10, 1018. https://doi.org/10.1038/s41467-019-08974-9
  • Raine, N.E., 2018. Pesticide affects social behavior of bees. Science 362, 643–644. https://doi.org/10.1126/science.aav5273
  • Rondeau, G., Sánchez-Bayo, F., Tennekes, H.A., Decourtye, A., Ramírez-Romero, R., Desneux, N., 2014. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Scientific Reports 4, 5566. https://doi.org/10.1038/srep05566
  • Rundlöf, M., Andersson, G.K.S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., Jonsson, O., Klatt, B.K., Pedersen, T.R., Yourstone, J., Smith, H.G., 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80. https://doi.org/10.1038/nature14420
  • Tsvetkov, N., Samson-Robert, O., Sood, K., Patel, H.S., Malena, D.A., Gajiwala, P.H., Maciukiewicz, P., Fournier, V., Zayed, A., 2017. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397. https://doi.org/10.1126/science.aam7470
  • Sandrock, C., Tanadini, M., Tanadini, L.G., Fauser-Misslin, A., Potts, S.G., Neumann, P., 2014. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLOS ONE 9, e103592. https://doi.org/10.1371/journal.pone.0103592
  • Siviter, H., Brown, M.J.F., Leadbeater, E., 2018. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561, 109–112. https://doi.org/10.1038/s41586-018-0430-6
  • Stanley, D.A., Garratt, M.P.D., Wickens, J.B., Wickens, V.J., Potts, S.G., Raine, N.E., 2015. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550. https://doi.org/10.1038/nature16167
  • Suchail, S., Guez, D., Belzunces, L.P., 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry 20, 2482–2486. https://doi.org/10.1002/etc.5620201113
  • Whitehorn, P.R., O’Connor, S., Wackers, F.L., Goulson, D., 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025
  • Williams, G.R., Troxler, A., Retschnig, G., Roth, K., Yañez, O., Shutler, D., Neumann, P., Gauthier, L., 2015. Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports 5, 14621. https://doi.org/10.1038/srep14621
  • Williamson, S.M., Wright, G.A., 2013. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. The Journal of Experimental Biology 216, 1799–807. https://doi.org/10.1242/jeb.083931
  • Wintermantel, D., Locke, B., Andersson, G.K.S., Semberg, E., Forsgren, E., Osterman, J., Rahbek Pedersen, T., Bommarco, R., Smith, H.G., Rundlöf, M., de Miranda, J.R., 2018. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nature Communications 9, 5446. https://doi.org/10.1038/s41467-018-07914-3
  • Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., et al., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.AAA1190
  • Woodcock, B.A., Garratt, M.P.D., Powney, G.D., Shaw, R.F., Osborne, J.L., et al., 2019. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications 10, 1481. https://doi.org/10.1038/s41467-019-09393-6

Declines of insect pollinators

  • Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee: https://link.springer.com/article/10.1007/s10682-021-10111-2
  • Cameron and Sad, 2020. Global Trends in Bumble Bee Health: https://doi.org/10.1146/annurev-ento-011118-111847
  • Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., Klein, A.M., 2009. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of botany 103, 1579–88. https://doi.org/10.1093/aob/mcp076
  • Aizen, M.A., Harder, L.D., 2009. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology 19, 915–918. https://doi.org/10.1016/j.cub.2009.03.071
  • Arbetman, M.P., Gleiser, G., Morales, C.L., Williams, P., Aizen, M.A., 2017. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proceedings of the Royal Society B: Biological Sciences 284.
  • Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E., 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354. https://doi.org/10.1126/science.1127863
  • Cameron, S.A., Lozier, J.D., Strange, J.P., Koch, J.B., Cordes, N., Solter, L.F., Griswold, T.L., 2011. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108, 662–7. https://doi.org/10.1073/pnas.1014743108
  • Cole, L.J., Kleijn, D., Dicks, L.V., Stout, J.C., Potts, S.G., Albrecht, M., Balzan, M.V., Bartomeus, I., Bebeli, P.J., Bevk, D., Biesmeijer, J.C., Chlebo, R., Dautartė, A., Emmanouil, N., Hartfield, C., Holland, J.M., Holzschuh, A., Knoben, N.T.J., Kovács‐Hostyánszki, A., Mandelik, Y., Panou, H., Paxton, R.J., Petanidou, T., Carvalho, M.A.A.P. de, Rundlöf, M., Sarthou, J.-P., Stavrinides, M.C., Suso, M.J., Szentgyörgyi, H., Vaissière, B.E., Varnava, A., Vilà, M., Zemeckis, R., Scheper, J., n.d. A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology n/a. https://doi.org/10.1111/1365-2664.13572
  • Crossley, M.S., Meier, A.R., Baldwin, E.M., Berry, L.L., Crenshaw, L.C., Hartman, G.L., Lagos-Kutz, D., Nichols, D.H., Patel, K., Varriano, S., Snyder, W.E., Moran, M.D., 2020. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nature Ecology & Evolution 1–9. https://doi.org/10.1038/s41559-020-1269-4
  • Garibaldi, L.A., Carvalheiro, L.G., Leonhardt, S.D., Aizen, M.A., Blaauw, B.R., Isaacs, R., Kuhlmann, M., Kleijn, D., Klein, A.M., Kremen, C., Morandin, L., Scheper, J., Winfree, R., 2014. From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment 12, 439–447. https://doi.org/10.1890/130330
  • Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., et al., 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200
  • Goulson, D., Nicholls, E., Botias, C., Rotheray, E.L., 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957–1255957. https://doi.org/10.1126/science.1255957
  • Klink, R. van, Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A., Chase, J.M., 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931
  • Kluser, S., Peduzzi, P., 2007. Global pollinator decline: A literature review. UNEP/GRID- Europe.
  • Ollerton, J., Erenler, H., Edwards, M., Crockett, R., 2014. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259
  • Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., 2016. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588
  • Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A., Isaac, N.J.B., 2019. Widespread losses of pollinating insects in Britain. Nature Communications 10, 1018. https://doi.org/10.1038/s41467-019-08974-9
  • Seibold, S., Gossner, M.M., Simons, N.K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer, C., Bauhus, J., Fischer, M., Habel, J.C., Linsenmair, K.E., Nauss, T., Penone, C., Prati, D., Schall, P., Schulze, E.-D., Vogt, J., Wöllauer, S., Weisser, W.W., 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3
  • Vanbergen, A.J., Espíndola, A., Aizen, M.A., 2018. Risks to pollinators and pollination from invasive alien species. Nature Ecology & Evolution 2, 16–25. https://doi.org/10.1038/s41559-017-0412-3
  • Wagner, D.L., 2020. Insect declines in the Anthropocene. Annual Review of Entomology 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151
  • Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., Redhead, J., Ridding, L., Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, S., Hulmes, L., Sárospataki, M., Saure, C., Edwards, M., Genersch, E., Knäbe, S., Pywell, R.F., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190
  • Siviter and Muth. 2020: Do novel insecticides pose a threat to beneficial insects? https://doi.org/10.1098/rspb.2020.1265

Exposure of insect pollinators to neonicotinoids

  • Anderson, N.L., Harmon-Threatt, A.N., 2019. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Scientific Reports 9, 3724. https://doi.org/10.1038/s41598-019-40031-9
  • Arce, A.N., David, T.I., Randall, E.L., Ramos Rodrigues, A., Colgan, T.J., Wurm, Y., Gill, R.J., 2017. Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. Journal of Applied Ecology 54, 1199–1208. https://doi.org/10.1111/1365-2664.12792
  • Arce, A.N., Ramos Rodrigues, A., Yu, J., Colgan, T.J., Wurm, Y., Gill, R.J., 2018. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proceedings of the Royal Society B: Biological Sciences 285, 20180655. https://doi.org/10.1098/rspb.2018.0655
  • Auteri, D., Arena, M., Barmaz, S., Ippolito, A., Linguadoca, A., Molnar, T., Sharp, R., Szentes, C., Vagenende, B., Verani, A., 2017. Neonicotinoids and bees: The case of the European regulatory risk assessment. Science of The Total Environment 579, 966–971. https://doi.org/10.1016/j.scitotenv.2016.10.158
  • Azpiazu, C., Bosch, J., Viñuela, E., Medrzycki, P., Teper, D., Sgolastra, F., 2019. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports 9, 1–11. https://doi.org/10.1038/s41598-019-50255-4
  • Badawy, M.E.I., Nasr, H.M., Rabea, E.I., 2015. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177–193. https://doi.org/10.1007/s13592-014-0315-0
  • Baron, G.L., Jansen, V.A.A., Brown, M.J.F., Raine, N.E., 2017. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology & Evolution 1, 1308–1316. https://doi.org/10.1038/s41559-017-0260-1
  • Baron, G.L., Raine, N.E., Brown, M.J.F., 2014. Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. Journal of Applied Ecology 51, 460–469. https://doi.org/10.1111/1365-2664.12205
  • Blacquière, T., Smagghe, G., van Gestel, C.A.M., Mommaerts, V., 2012. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0863-x
  • Blanken, L.J., van Langevelde, F., van Dooremalen, C., 2015. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees. Proceedings of the Royal Society B: Biological Sciences 282, 20151738. https://doi.org/10.1098/rspb.2015.1738
  • Böhme, F., Bischoff, G., Zebitz, C.P., Rosenkranz, P., Wallner, K., 2017. Chronic exposure of honeybees, Apis mellifera (Hymenoptera: Apidae), to a pesticide mixture in realistic field exposure rates. Apidologie 48, 353–363. https://doi.org/10.1007/s13592-016-0479-x
  • Bonmatin, J.-M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D., Noome, D.A., Simon-Delso, N., Tapparo, A., 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7
  • Botias, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E., Goulson, D., 2015. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environmental Science & Technology 49, 12731–12740. https://doi.org/10.1021/acs.est.5b03459
  • Brandt, A., Gorenflo, A., Siede, R., Meixner, M., Büchler, R., 2016. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001
  • Bryden, J., Gill, R.J., Mitton, R.A.A., Raine, N.E., Jansen, V.A.A., 2013. Chronic sublethal stress causes bee colony failure. Ecology Letters 16, 1463–1469. https://doi.org/10.1111/ele.12188
  • Carreck, N.L., Ratnieks, F.L.W., 2014. The dose makes the poison: Have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies? Journal of Apicultural Research 53, 607–614. https://doi.org/10.3896/ibra.1.53.5.08
  • Christen, V., Kunz, P.Y., Fent, K., 2018. Endocrine disruption and chronic effects of plant protection products in bees: can we better protect our pollinators? Environmental Pollution 243, 1588–1601. https://doi.org/10.1016/j.envpol.2018.09.117
  • Chaimanee, V., Evans, J.D., Chen, Y., Jackson, C., Pettis, J.S., 2016. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology 89, 1–8. https://doi.org/10.1016/j.jinsphys.2016.03.004
  • Christen, V., Bachofer, S., Fent, K., 2017. Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environmental Pollution 220, 1264–1270. https://doi.org/10.1016/j.envpol.2016.10.105
  • Colwell, M.J., Williams, G.R., Evans, R.C., Shutler, D., 2017. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecology and Evolution 7, 7243–7253. https://doi.org/10.1002/ece3.3178
  • Cook, S.C., 2019. Compound and dose-dependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology. Insects 10, 18. https://doi.org/10.3390/insects10010018
  • Crall, J.D., de Bivort, B.L., Dey, B., Ford Versypt, A.N., 2019. Social buffering of pesticides in bumblebees: Agent-based modeling of the effects of colony size and neonicotinoid exposure on behavior within nests. Frontiers in Ecology and Evolution 7. https://doi.org/10.3389/fevo.2019.00051
  • Crall, J.D., Switzer, C.M., Oppenheimer, R.L., Ford Versypt, A.N., Dey, B., Brown, A., Eyster, M., Guérin, C., Pierce, N.E., Combes, S.A., de Bivort, B.L., 2018. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686. https://doi.org/10.1126/science.aat1598
  • Dance, C., Botías, C., Goulson, D., 2017. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicology and Environmental Safety 139, 194–201. https://doi.org/10.1016/j.ecoenv.2017.01.041
  • David, A., Botías, C., Abdul-Sada, A., Nicholls, E., Rotheray, E.L., Hill, E.M., Goulson, D., 2016. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environment International 88, 169–178. https://doi.org/10.1016/j.envint.2015.12.011
  • De Smet, L., Hatjina, F., Ioannidis, P., Hamamtzoglou, A., Schoonvaere, K., Francis, F., Meeus, I., Smagghe, G., de Graaf, D.C., 2017. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLOS ONE 12, e0171529. https://doi.org/10.1371/journal.pone.0171529
  • Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F., 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences 110, 18466–71. https://doi.org/10.1073/pnas.1314923110
  • Easton, A.H., Goulson, D., 2013. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations. PLOS ONE 8, e54819. https://doi.org/10.1371/journal.pone.0054819
  • Erban, T., Sopko, B., Talacko, P., Harant, K., Kadlikova, K., Halesova, T., Riddellova, K., Pekas, A., 2018. Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis. Journal of Proteomics. https://doi.org/10.1016/j.jprot.2018.12.022
  • Fairbrother, A., Purdy, J., Anderson, T., Fell, R., 2014. Risks of neonicotinoid insecticides to honeybees. Environmental Toxicology and Chemistry 33, 719–731. https://doi.org/10.1002/etc.2527
  • Feltham, H., Park, K., Goulson, D., 2014. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7
  • Garrido, P.M., Porrini, M.P., Antúnez, K., Branchiccela, B., Martínez-Noël, G.M.A., Zunino, P., Salerno, G., Eguaras, M.J., Ieno, E., 2016. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees. Veterinary Research 47, 51. https://doi.org/10.1186/s13567-016-0335-z
  • Gill, R.J., Raine, N.E., 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292
  • Gill, R.J., Ramos-Rodriguez, O., Raine, N.E., 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108. https://doi.org/10.1038/nature11585
  • Goulson, D., Nicholls, E., Botias, C., Rotheray, E.L., 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957–1255957. https://doi.org/10.1126/science.1255957
  • Gradish, A.E., van der Steen, J., Scott-Dupree, C.D., Cabrera, A.R., Cutler, G.C., Goulson, D., Klein, O., Lehmann, D.M., Lückmann, J., O’Neill, B., Raine, N.E., Sharma, B., Thompson, H., 2019. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumblebees (Hymenoptera: Apidae): Implications for risk assessments. Environ Entomol 48, 12–21. https://doi.org/10.1093/ee/nvy168
  • Grassl, J., Holt, S., Cremen, N., Peso, M., Hahne, D., Baer, B., 2018. Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. Journal of Invertebrate Pathology 159, 78–86. https://doi.org/10.1016/J.JIP.2018.10.005
  • Härtel, S., Steffan-Dewenter, I., 2014. Ecology: honey bee foraging in human-modified landscapes. Current Biology 24, R524-6. https://doi.org/10.1016/j.cub.2014.04.052
  • Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A., 2012. A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350. https://doi.org/10.1126/science.1215039
  • Henry, M., Cerrutti, N., Aupinel, P., Decourtye, A., Gayrard, M., Odoux, J.-F., Pissard, A., Rüger, C., Bretagnolle, V., 2015. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proceedings of the Royal Society B: Biological Sciences 282. https://doi.org/10.1098/rspb.2015.2110
  • Hladik, M.L., Vandever, M., Smalling, K.L., 2016. Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Science of The Total Environment 542, 469–477. https://doi.org/10.1016/j.scitotenv.2015.10.077
  • Holder, P.J., Jones, A., Tyler, C.R., Cresswell, J.E., 2018. Fipronil pesticide as a suspect in historical mass mortalities of honey bees. Proceedings of the National Academy of Sciences 115, 13033–13038. https://doi.org/10.1073/pnas.1804934115
  • Kopit, A.M., Pitts-Singer, T.L., 2018. Routes of pesticide exposure in solitary, cavity-nesting bees. Environmental Entomology 47, 499–510. https://doi.org/10.1093/ee/nvy034
  • Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., Given, K., 2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLOS ONE 7, e29268. https://doi.org/10.1371/journal.pone.0029268
  • Lämsä Juho, Kuusela Erno, Tuomi Juha, Juntunen Sini, Watts Phillip C., 2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the Royal Society B: Biological Sciences 285, 20180506. https://doi.org/10.1098/rspb.2018.0506
  • Laycock, I., Cotterell, K.C., O’Shea-Wheller, T.A., Cresswell, J.E., 2014. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicology and Environmental Safety 100, 153–158. https://doi.org/10.1016/j.ecoenv.2013.10.027
  • Laycock, I., Cresswell, J.E., 2013. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid. PLOS ONE 8, e79872. https://doi.org/10.1371/journal.pone.0079872
  • Laycock, I., Lenthall, K.M., Barratt, A.T., Cresswell, J.E., 2012. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21, 1937–1945. https://doi.org/10.1007/s10646-012-0927-y
  • Leza, M., Watrous, K.M., Bratu, J., Woodard, S.H., 2018. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proceedings of the Royal Society B: Biological Sciences 285, 20180761. https://doi.org/10.1098/rspb.2018.0761
  • Lundin, O., Rundlöf, M., Smith, H.G., Fries, I., Bommarco, R., 2015. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLOS ONE 10, e0136928. https://doi.org/10.1371/journal.pone.0136928
  • Mao, W., Schuler, M.A., Berenbaum, M.R., 2011. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proceedings of the National Academy of Sciences 108, 12657–62. https://doi.org/10.1073/pnas.1109535108
  • Martelli, F., Zhongyuan, Z., Wang, J., Wong, C.-O., Karagas, N.E., Roessner, U., Rupasinghe, T., Venkatachalam, K., Perry, T., Bellen, H.J., Batterham, P., 2020. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. PNAS 117, 25840–25850. https://doi.org/10.1073/pnas.2011828117
  • Mitchell, E.A.D., Mulhauser, B., Mulot, M., Mutabazi, A., Glauser, G., Aebi, A., 2017. A worldwide survey of neonicotinoids in honey. Science 358, 109–111. https://doi.org/10.1126/science.aan3684
  • Moffat, C., Buckland, S.T., Samson, A.J., McArthur, R., Chamosa Pino, V., Bollan, K.A., Huang, J.T.-J., Connolly, C.N., 2016. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Scientific Reports 6, 24764. https://doi.org/10.1038/srep24764
  • Moffat, C., Pacheco, J.G., Sharp, S., Samson, A.J., Bollan, K.A., Huang, J., Buckland, S.T., Connolly, C.N., 2015. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). The FASEB Journal 29, 2112–2119. https://doi.org/10.1096/fj.14-267179
  • Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G., 2009. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207. https://doi.org/10.1007/s10646-009-0406-2
  • Muth, F., Leonard, A.S., 2019. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Scientific Reports 9, 4764. https://doi.org/10.1038/s41598-019-39701-5
  • Osborne, J.L., 2012. Bumblebees and pesticides. Nature 491, 43–45. https://doi.org/10.1038/nature11637
  • Palmer, M.J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G.A., Connolly, C.N., 2013. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications 4, 1634. https://doi.org/10.1038/ncomms2648
  • Pamminger, T., Basley, K., Goulson, D., Hughes, W., 2017. First indication of acetylcholine-based communication in honeybee haemocytes and its modulation by a neonicotinoid insecticide. bioRxiv 105700. https://doi.org/10.1101/105700
  • Piiroinen, S., Goulson, D., 2016. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proceedings of the Royal Society B: Biological Sciences 283, 20160246. https://doi.org/10.1098/rspb.2016.0246
  • Pilling, E., Campbell, P., Coulson, M., Ruddle, N., Tornier, I., 2013. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLOS ONE 8, e77193. https://doi.org/10.1371/journal.pone.0077193
  • Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A., Isaac, N.J.B., 2019. Widespread losses of pollinating insects in Britain. Nature Communications 10, 1018. https://doi.org/10.1038/s41467-019-08974-9
  • Raine, N.E., 2018a. An alternative to controversial pesticides still harms bumblebees. Nature 561, 40–41. https://doi.org/10.1038/d41586-018-05917-0
  • Raine, N.E., 2018b. Pesticide affects social behavior of bees. Science 362, 643–644. https://doi.org/10.1126/science.aav5273
  • Raine, N.E., Gill, R.J., 2015. Tasteless pesticides affect bees in the field. Nature 521, 38–40. https://doi.org/10.1038/nature14391
  • Ramos, S.E., Schiestl, F.P., 2019. Rapid plant evolution driven by the interaction of pollination and herbivory. Science 364, 193–196. https://doi.org/10.1126/science.aav6962
  • Ravaiano, S.V., Barbosa, W.F., Tomé, H.V.V., Campos, L.A. de O., Martins, G.F., 2018. Acute and oral exposure to imidacloprid does not affect the number of circulating hemocytes in the stingless bee Melipona quadrifasciata post immune challenge. Pesticide Biochemistry and Physiology 152, 24–28. https://doi.org/10.1016/J.pestbp.2018.08.002
  • Raymann, K., Motta, E.V.S., Girard, C., Riddington, I.M., Dinser, J.A., Moran, N.A., 2018. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Applied and Environmental Microbiology 84, e00545-18. https://doi.org/10.1128/AEM.00545-18
  • Reid, R.J., Troczka, B.J., Kor, L., Randall, E., Williamson, M.S., Field, L.M., Nauen, R., Bass, C., Davies, T.G.E., 2020. Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax). Pesticide Biochemistry and Physiology 104562. https://doi.org/10.1016/j.pestbp.2020.104562
  • Renzi, M.T., Amichot, M., Pauron, D., Tchamitchian, S., Brunet, J.-L., Kretzschmar, A., Maini, S., Belzunces, L.P., 2016. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicology and Environmental Safety 127, 205–213. https://doi.org/10.1016/J.ecoenv.2016.01.028
  • Roat, T.C., dos Santos-Pinto, J.R.A., dos Santos, L.D., Santos, K.S., Malaspina, O., Palma, M.S., 2014. Modification of the brain proteome of Africanized honey bees (Apis mellifera) exposed to a sub‐lethal doses of the insecticide fipronil. Ecotoxicology 23, 1659–1670. https://doi.org/10.1007/s10646-014-1305-8
  • Rolke, D., Persigehl, M., Peters, B., Sterk, G., Blenau, W., 2016. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology 25, 1691–1701. https://doi.org/10.1007/s10646-016-1723-x
  • Sandrock, C., Tanadini, L.G., Pettis, J.S., Biesmeijer, J.C., Potts, S.G., Neumann, P., 2014. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology 16, 119–128. https://doi.org/10.1111/afe.12041
  • Sgolastra, F., Hinarejos, S., Pitts-Singer, T.L., Boyle, N.K., Joseph, T., Lūckmann, J., Raine, N.E., Singh, R., Williams, N.M., Bosch, J., 2019. Pesticide exposure assessment paradigm for solitary bees. Environmental Entomology 48, 22–35. https://doi.org/10.1093/ee/nvy105
  • Sgolastra, F., Medrzycki, P., Bortolotti, L., Renzi, M.T., Tosi, S., Bogo, G., Teper, D., Porrini, C., Molowny‐Horas, R., Bosch, J., 2017. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Management Science 73, 1236–1243. https://doi.org/10.1002/ps.4449
  • Shi, T., Burton, S., Wang, Y., Xu, S., Zhang, W., Yu, L., 2018. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. Pesticide Biochemistry and Physiology 152, 17–23. https://doi.org/10.1016/j.pestbp.2018.08.003
  • Siviter, H., Brown, M.J.F., Leadbeater, E., 2018. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561, 109–112. https://doi.org/10.1038/s41586-018-0430-6
  • Siviter, H., Horner, J., Brown, M.J.F., Leadbeater, E., n.d. Sulfoxaflor exposure reduces egg laying in bumblebees Bombus terrestris. Journal of Applied Ecology 0. https://doi.org/10.1111/1365-2664.13519
  • Sponsler, D.B., Grozinger, C.M., Hitaj, C., Rundlöf, M., Botías, C., Code, A., Lonsdorf, E.V., Melathopoulos, A.P., Smith, D.J., Suryanarayanan, S., Thogmartin, W.E., Williams, N.M., Zhang, M., Douglas, M.R., 2019. Pesticides and pollinators: A socioecological synthesis. Science of The Total Environment 662, 1012–1027. https://doi.org/10.1016/j.scitotenv.2019.01.016
  • Stanley, D.A., Garratt, M.P.D., Wickens, J.B., Wickens, V.J., Potts, S.G., Raine, N.E., 2015a. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550. https://doi.org/10.1038/nature16167
  • Stanley, D.A., Russell, A.L., Morrison, S.J., Rogers, C., Raine, N.E., 2016. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. Journal of Applied Ecology 53, 1440–1449. https://doi.org/10.1111/1365-2664.12689
  • Stanley, D.A., Raine, N.E., 2017. Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Scientific Reports 7, 8005. https://doi.org/10.1038/s41598-017-08752-x
  • Stanley, D.A., Raine, N.E., 2016. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Functional Ecology 30, 1132–1139. https://doi.org/10.1111/1365-2435.12644
  • Stanley, D.A., Smith, K.E., Raine, N.E., 2015b. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Scientific Reports 5, 16508. https://doi.org/10.1038/srep16508
  • Straub, L., Villamar-Bouza, L., Bruckner, S., Chantawannakul, P., Gauthier, L., Khongphinitbunjong, K., Retschnig, G., Troxler, A., Vidondo, B., Neumann, P., Williams, G.R., 2016. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings of the Royal Society B: Biological Sciences 283, 20160506. https://doi.org/10.1098/rspb.2016.0506
  • Tesovnik, T., Cizelj, I., Zorc, M., Čitar, M., Božič, J., Glavan, G., Narat, M., 2017. Immune related gene expression in worker honey bee (Apis mellifera carnica_) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor). PLOS ONE 12, e0187079. https://doi.org/10.1371/journal.pone.0187079
  • Thompson, H., Overmyer, J., Feken, M., Ruddle, N., Vaughan, S., Scorgie, E., Bocksch, S., Hill, M., 2019. Thiamethoxam: Long-term effects following honey bee colony-level exposure and implications for risk assessment. Science of The Total Environment 654, 60–71. https://doi.org/10.1016/j.scitotenv.2018.11.003
  • Tomé, H.V.V., Martins, G.F., Lima, M.A.P., Campos, L.A.O., Guedes, R.N.C., 2012. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLOS ONE 7, e38406. https://doi.org/10.1371/journal.pone.0038406
  • Tosi, S., Burgio, G., Nieh, J.C., 2017. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Scientific Reports 7, 1201. https://doi.org/10.1038/s41598-017-01361-8
  • Tsvetkov, N., Samson-Robert, O., Sood, K., Patel, H.S., Malena, D.A., Gajiwala, P.H., Maciukiewicz, P., Fournier, V., Zayed, A., 2017. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397. https://doi.org/10.1126/science.aam7470
  • Whitehorn, P.R., O’Connor, S., Wackers, F.L., Goulson, D., 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025
  • Whitehorn, P.R., Wallace, C., Vallejo-Marin, M., 2017. Neonicotinoid pesticide limits improvement in buzz pollination by bumblebees. Scientific Reports 7, 15562. https://doi.org/10.1038/s41598-017-14660-x
  • Williamson, S.M., Willis, S.J., Wright, G.A., 2014. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23, 1409–18. https://doi.org/10.1007/s10646-014-1283-x
  • Williamson, S.M., Wright, G.A., 2013. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. The Journal of Experimental Biology 216, 1799–807. https://doi.org/10.1242/jeb.083931
  • Wintermantel, D., Locke, B., Andersson, G.K.S., Semberg, E., Forsgren, E., Osterman, J., Rahbek Pedersen, T., Bommarco, R., Smith, H.G., Rundlöf, M., de Miranda, J.R., 2018. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nature Communications 9, 5446. https://doi.org/10.1038/s41467-018-07914-3
  • Wintermantel, D., Odoux, J.-F., Decourtye, A., Henry, M., Allier, F., Bretagnolle, V., 2020. Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Science of The Total Environment 704, 135400. https://doi.org/10.1016/j.scitotenv.2019.135400
  • Wood, S.C., Kozii, I.V., Koziy, R.V., Epp, T., Simko, E., 2018. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLOS ONE 13, e0190517. https://doi.org/10.1371/journal.pone.0190517
  • Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., et al., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.AAA1190
  • Wu-Smart, J., Spivak, M., 2016. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports 6, 32108. https://doi.org/10.1038/srep32108
  • Verena Strobl, Selina Bruckner, Sarah Radford, Sarah Wolf, Matthias Albrecht, Laura Villamar‐Bouza, Jakkrawut Maitip, Eleonora Kolari, Panuwan Chantawannakul, Gaétan Glauser, Geoffrey R. Williams, Peter Neumann, Lars Straub. 2021. No impact of neonicotinoids on male solitary bees Osmia cornuta under semi‐field conditions. https://doi.org/10.1111/phen.12349

Pesticide levels in pollen and nectar

  • Botias, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E., Goulson, D., 2015. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environmental Science & Technology 49, 12731–12740. https://doi.org/10.1021/acs.est.5b03459
  • Wood, T.J., Goulson, D., 2017. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environmental Science and Pollution Research 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x

Dosage effects

  • Anderson, N.L., Harmon-Threatt, A.N., 2019. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Scientific Reports 9, 3724. https://doi.org/10.1038/s41598-019-40031-9
  • Carreck, N.L., Ratnieks, F.L.W., 2014. The dose makes the poison: Have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies? Journal of Apicultural Research 53, 607–614. https://doi.org/10.3896/ibra.1.53.5.08
  • Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F., 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences 110, 18466–71. https://doi.org/10.1073/pnas.1314923110
  • Feltham, H., Park, K., Goulson, D., 2014. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7
  • Kessler, S.C., Tiedeken, E.J., Simcock, K.L., Derveau, S., Mitchell, J., Softley, S., Radcliffe, A., Stout, J.C., Wright, G.A., 2015. Bees prefer foods containing neonicotinoid pesticides. Nature 521, 74–76. https://doi.org/10.1038/nature14414
  • Laycock, I., Cotterell, K.C., O’Shea-Wheller, T.A., Cresswell, J.E., 2014. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicology and Environmental Safety 100, 153–158. https://doi.org/10.1016/j.ecoenv.2013.10.027
  • Stoner, K.A., 2016. Current pesticide risk assessment protocols do not adequately address differences between honey bees (Apis mellifera) and bumble bees (Bombus spp.). Frontiers in Environmental Science 4. https://doi.org/10.3389/fenvs.2016.00079
  • Whitehorn, P.R., O’Connor, S., Wackers, F.L., Goulson, D., 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025

Gene expression

  • Aufauvre, J., Misme-Aucouturier, B., Viguès, B., Texier, C., Delbac, F., Blot, N., 2014. Transcriptome analyses of the honey bee response to Nosema ceranae and insecticides. PLOS ONE 9, e91686. https://doi.org/10.1371/journal.pone.0091686
  • Bao, H., Liu, Y., Zhang, Y., Liu, Z., 2017. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis. Pesticide Biochemistry and Physiology 140, 36–41. https://doi.org/10.1016/j.pestbp.2017.06.001
  • Bass, C., Field, L.M., 2011. Gene amplification and insecticide resistance. Pest Management Science 67, 886–890. https://doi.org/10.1002/ps.2189
  • Bass, C., Puinean, A.M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V., Crossthwaite, A.J., Denholm, I., Field, L.M., Foster, S.P., Lind, R., Williamson, M.S., Slater, R., 2011. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience 12, 51. https://doi.org/10.1186/1471-2202-12-51
  • Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R., Williamson, M.S., 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology 51, 41–51. https://doi.org/10.1016/J.IBMB.2014.05.003
  • Beadle, K., Singh, K.S., Troczka, B.J., Randall, E., Zaworra, M., Zimmer, C.T., Hayward, A., Reid, R., Kor, L., Kohler, M., Buer, B., Nelson, D.R., Williamson, M.S., Davies, T.G.E., Field, L.M., Nauen, R., Bass, C., 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLOS Genetics 15, e1007903. https://doi.org/10.1371/journal.pgen.1007903
  • Bebane, P.S.A., Hunt, B.J., Pegoraro, M., Jones, A.R.C., Marshall, H., Rosato, E., Mallon, E.B., 2019. The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the buff-tailed bumblebee Bombus terrestris. Proceedings of the Royal Society B: Biological Sciences 286, 20190718. https://doi.org/10.1098/rspb.2019.0718
  • Beckingham, C., Phillips, J., Gill, M., Crossthwaite, A.J., 2013. Investigating nicotinic acetylcholine receptor expression in neonicotinoid resistant Myzus persicae FRC. Pesticide Biochemistry and Physiology 107, 293–298. https://doi.org/10.1016/j.pestbp.2013.08.005
  • Benzidane, Y., Goven, D., Abd-Ella, A.A., Deshayes, C., Lapied, B., Raymond, V., 2017. Subchronic exposure to sublethal dose of imidacloprid changes electrophysiological properties and expression pattern of nicotinic acetylcholine receptor subtypes in insect neurosecretory cells. NeuroToxicology 62, 239–247. https://doi.org/10.1016/j.neuro.2017.08.001
  • Chaimanee, V., Evans, J.D., Chen, Y., Jackson, C., Pettis, J.S., 2016. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology 89, 1–8. https://doi.org/10.1016/j.jinsphys.2016.03.004
  • Chen, X., Li, F., Chen, A., Ma, K., Liang, P., Liu, Y., Song, D., Gao, X., 2017. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pesticide Biochemistry and Physiology 141, 1–8. https://doi.org/10.1016/j.pestbp.2016.11.004
  • Christen, V., Joho, Y., Vogel, M., Fent, K., 2019. Transcriptional and physiological effects of the pyrethroid deltamethrin and the organophosphate dimethoate in the brain of honey bees (Apis mellifera). Environmental Pollution 244, 247–256. https://doi.org/10.1016/j.envpol.2018.10.030
  • Christesen, D., Yang, Y.T., Somers, J., Robin, C., Sztal, T., Batterham, P., Perry, T., 2017. Transcriptome analysis of Drosophila melanogaster third instar larval ring glands points to novel functions and uncovers a cytochrome P450 required for development. G3: Genes, Genomes, Genetics 7, 467–479. https://doi.org/10.1534/g3.116.037333
  • Colgan, T.J., Fletcher, I.K., Arce, A.N., Gill, R.J., Ramos Rodrigues, A., Stolle, E., Chittka, L., Wurm, Y., 2019. Caste- and pesticide-specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Molecular Ecology. https://doi.org/10.1111/mec.15047
  • Denecke, S., Fusetto, R., Martelli, F., Giang, A., Battlay, P., Fournier-Level, A., O’ Hair, R.A., Batterham, P., 2017. Multiple P450s and variation in neuronal genes underpins the response to the insecticide imidacloprid in a population of Drosophila melanogaster. Scientific Reports 7, 11338. https://doi.org/10.1038/s41598-017-11092-5
  • Denecke, S., Fusetto, R., Batterham, P., 2017. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts. Insect Biochemistry and Molecular Biology 91, 1–9. https://doi.org/10.1016/j.ibmb.2017.09.017
  • De Smet, L., Hatjina, F., Ioannidis, P., Hamamtzoglou, A., Schoonvaere, K., Francis, F., Meeus, I., Smagghe, G., de Graaf, D.C., 2017. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLOS ONE 12, e0171529. https://doi.org/10.1371/journal.pone.0171529
  • Derecka, K., Blythe, M.J., Malla, S., Genereux, D.P., Guffanti, A., Pavan, P., Moles, A., Snart, C., Ryder, T., Ortori, C.A., Barrett, D.A., Schuster, E., Stöger, R., 2013. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLOS ONE 8, e68191. https://doi.org/10.1371/journal.pone.0068191
  • Dupuis, J., Louis, T., Gauthier, M., Raymond, V., 2012. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions. Neuroscience & Biobehavioral Reviews 36, 1553–1564. https://doi.org/10.1016/j.neubiorev.2012.04.003
  • Dupuis, J.P., Gauthier, M., Raymond-Delpech, V., 2011. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. Journal of Neurophysiology 106, 1604–1613. https://doi.org/10.1152/jn.00126.2011
  • Fournier-Level, A., Good, R.T., Wilcox, S.A., Rane, R.V., Schiffer, M., Chen, W., Battlay, P., Perry, T., Batterham, P., Hoffmann, A.A., Robin, C., 2019. The spread of resistance to imidacloprid is restricted by thermotolerance in natural populations of Drosophila melanogaster. Nature Ecology & Evolution 1. https://doi.org/10.1038/s41559-019-0837-y
  • Glavinic, U., Tesovnik, T., Stevanovic, J., Zorc, M., Cizelj, I., Stanimirovic, Z., Narat, M., 2019. Response of adult honey bees treated in larval stage with prochloraz to infection with Nosema ceranae. PeerJ 7, e6325. https://doi.org/10.7717/peerj.6325
  • Gregorc, A., Alburaki, M., Rinderer, N., Sampson, B., Knight, P.R., Karim, S., Adamczyk, J., 2018. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific Reports 8, 15003. https://doi.org/10.1038/s41598-018-33348-4
  • Guengerich, F.P., Waterman, M.R., Egli, M., 2016. Recent structural insights into cytochrome P450 function. Trends in Pharmacological Sciences 37, 625–640. https://doi.org/10.1016/j.tips.2016.05.006
  • Hayward, A., Beadle, K., Singh, K.S., Exeler, N., Zaworra, M., Almanza, M.-T., Nikolakis, A., Garside, C., Glaubitz, J., Bass, C., Nauen, R., 2019. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524. https://doi.org/10.1038/s41559-019-1011-2
  • Ihara, M., Furutani, S., Shigetou, S., Shimada, S., Niki, K., Komori, Y., Kamiya, M., Koizumi, W., Magara, L., Hikida, M., Noguchi, A., Okuhara, D., Yoshinari, Y., Kondo, S., Tanimoto, H., Niwa, R., Sattelle, D.B., Matsuda, K., 2020. Cofactor-enabled functional expression of fruit fly, honey bee, and bumble bee nicotinic receptors reveals picomolar neonicotinoid actions. PNAS 117, 16283–16291. https://doi.org/10.1073/pnas.2003667117
  • Johnson, R.M., Evans, J.D., Robinson, G.E., Berenbaum, M.R., 2009. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences 106, 14790–5. https://doi.org/10.1073/pnas.0906970106
  • Johnson, R.M., Mao, W., Pollock, H.S., Niu, G., Schuler, M.A., Berenbaum, M.R., 2012. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLOS ONE 7, e31051. https://doi.org/10.1371/journal.pone.0031051
  • Jones, A.K., Grauso, M., Sattelle, D.B., 2005. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85, 176–187. https://doi.org/10.1016/J.YGENO.2004.09.001
  • Jones, A.K., Raymond-Delpech, V., Thany, S.H., Gauthier, M., Sattelle, D.B., 2006. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Research 16, 1422–30. https://doi.org/10.1101/gr.4549206
  • Jones, A.K., Buckingham, S.D., Sattelle, D.B., 2010. Proteins interacting with nicotinic acetylcholine receptors: expanding functional and therapeutic horizons. Trends in Pharmacological Sciences 31, 455–462. https://doi.org/10.1016/j.tips.2010.07.001
  • Kim, J.I., Kwon, M., Kim, G.-H., Kim, S.Y., Lee, S.H., 2015. Two mutations in nAChR beta subunit is associated with imidacloprid resistance in the Aphis gossypii. Journal of Asia-Pacific Entomology 18, 291–296. https://doi.org/10.1016/j.aspen.2015.01.010
  • Lansdell, S.J., Collins, T., Goodchild, J., Millar, N.S., 2012. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels. BMC neuroscience 13, 73. https://doi.org/10.1186/1471-2202-13-73
  • Lockett, G.A., Almond, E.J., Huggins, T.J., Parker, J.D., Bourke, A.F.G., 2016. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Experimental Gerontology 77, 52–61. https://doi.org/10.1016/j.exger.2016.02.007
  • Longhurst, C., Babcock, J.M., Denholm, I., Gorman, K., Thomas, J.D., Sparks, T.C., 2013. Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Management Science 69, 809–813. https://doi.org/10.1002/ps.3439
  • Manjon, C., Troczka, B.J., Zaworra, M., Beadle, K., Randall, E., Hertlein, G., Singh, K.S., Zimmer, C.T., Homem, R.A., Lueke, B., Reid, R., Kor, L., Kohler, M., Benting, J., Williamson, M.S., Davies, T.G.E., Field, L.M., Bass, C., Nauen, R., 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Current Biology 28, 1137-1143.e5. https://doi.org/10.1016/j.cub.2018.02.045
  • Mao, W., Schuler, M.A., Berenbaum, M.R., 2011. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proceedings of the National Academy of Sciences 108, 12657–62. https://doi.org/10.1073/pnas.1109535108
  • Mao, W., Schuler, M.A., Berenbaum, M.R., 2017. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences 114, 2538–2543. https://doi.org/10.1073/pnas.1614864114
  • Morfin, N., Goodwin, P.H., Guzman-Novoa, E., 2020. Interaction of field realistic doses of clothianidin and Varroa destructor parasitism on adult honey bee (Apis mellifera L.) health and neural gene expression, and antagonistic effects on differentially expressed genes. PLOS ONE 15, e0229030. https://doi.org/10.1371/journal.pone.0229030
  • Osterman, J., Wintermantel, D., Locke, B., Jonsson, O., Semberg, E., Onorati, P., Forsgren, E., Rosenkranz, P., Rahbek-Pedersen, T., Bommarco, R., Smith, H.G., Rundlöf, M., de Miranda, J.R., 2019. Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature Communications 10, 692. https://doi.org/10.1038/s41467-019-08523-4
  • Perry, T., Somers, J., Yang, Y.T., Batterham, P., 2015. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction. Insect Biochemistry and Molecular Biology 64, 106–115. https://doi.org/10.1016/j.ibmb.2015.01.017
  • Pu, J., Sun, H., Wang, J., Wu, M., Wang, K., Denholm, I., Han, Z., 2016. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén). Insect Biochemistry and Molecular Biology 78, 20–28. https://doi.org/10.1016/j.ibmb.2016.08.008
  • Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S., Bass, C., 2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLOS Genetics 6, e1000999. https://doi.org/10.1371/journal.pgen.1000999
  • Pyakurel, P., Shin, M., Venton, B.J., 2018. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochemistry International 114, 33–41. https://doi.org/10.1016/j.neuint.2017.12.012
  • Schmehl, D.R., Teal, P.E.A., Frazier, J.L., Grozinger, C.M., 2014. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). Journal of Insect Physiology 71, 177–190. https://doi.org/10.1016/j.jinsphys.2014.10.002
  • Somers, J., Luong, H.N.B., Batterham, P., Perry, T., 2018. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost? Fly 12, 46–54. https://doi.org/10.1080/19336934.2017.1396399
  • Taillebois, E., Beloula, A., Quinchard, S., Jaubert-Possamai, S., Daguin, A., Servent, D., Tagu, D., Thany, S.H., Tricoire-Leignel, H., 2014. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum. PLOS ONE 9, e96669. https://doi.org/10.1371/journal.pone.0096669
  • Tan, J., Galligan, J.J., Hollingworth, R.M., 2007. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. NeuroToxicology 28, 829–842. https://doi.org/10.1016/j.neuro.2007.04.002
  • Tesovnik, T., Cizelj, I., Zorc, M., Čitar, M., Božič, J., Glavan, G., Narat, M., 2017. Immune related gene expression in worker honey bee (Apis mellifera carnica) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor). PLOS ONE 12, e0187079. https://doi.org/10.1371/journal.pone.0187079
  • Thany, S.H., Crozatier, M., Raymond-Delpech, V., Gauthier, M., Lenaers, G., 2005. Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 344, 125–132. https://doi.org/10.1016/j.gene.2004.09.010
  • Tsvetkov, N., MacPhail, V. J., Colla, S. R., & Zayed, A. (2021). Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola. Molecular Ecology, 00, 1– 11. https://doi.org/10.1111/mec.16049
  • Wan, Y., Yuan, G., He, B., Xu, B., Xie, W., Wang, S., Zhang, Y., Wu, Q., Zhou, X., 2018. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Insect Biochemistry and Molecular Biology 99, 1–10. https://doi.org/10.1016/J.IBMB.2018.05.002
  • Wang, H., Smagghe, G., Meeus, I., 2017. The role of a single gene encoding the Single von Willebrand factor C-domain protein (SVC) in bumblebee immunity extends beyond antiviral defense. Insect Biochemistry and Molecular Biology 91, 10–20. https://doi.org/10.1016/j.ibmb.2017.10.002
  • Wang, K., Fan, R.-L., Ji, W.-N., Zhang, W.-W., Chen, X.-M., Wang, S., Yin, L., Gao, F.-C., Chen, G.-H., Ji, T., 2018. Transcriptome analysis of newly emerged honeybees exposure to sublethal carbendazim during larval stage. Frontiers in Genetics 9, 426. https://doi.org/10.3389/fgene.2018.00426
  • Wu, M.-C., Chang, Y.-W., Lu, K.-H., Yang, E.-C., 2017. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochemistry and Molecular Biology 88, 12–20. https://doi.org/10.1016/j.ibmb.2017.06.016
  • Zimmer, C.T., Garrood, W.T., Singh, K.S., Randall, E., Lueke, B., Gutbrod, O., Matthiesen, S., Kohler, M., Nauen, R., Davies, T.G.E., Bass, C., 2018. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Current Biology 28, 268-274.e5. https://doi.org/10.1016/j.cub.2017.11.060
  • Zhang, Y., Liu, Y., Bao, H., Sun, H., Liu, Z., 2017. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies. Neuroscience Letters 638, 151–155. https://doi.org/10.1016/j.neulet.2016.12.041
  • Xu, G., Wu, S.-F., Teng, Z.-W., Yao, H.-W., Fang, Q., Huang, J., Ye, G.-Y., 2017. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae). Insect Science 24, 371–384. https://doi.org/10.1111/1744-7917.12324

nAChRs

  • Bass, C., Puinean, A.M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V.L., Crossthwaite, A.J., Denholm, I., Field, L.M., Foster, S.P., Lind, R., Williamson, M.S., Slater, R., 2011. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience 12, 51. https://doi.org/10.1186/1471-2202-12-51
  • Beckingham, C., Phillips, J., Gill, M., Crossthwaite, A.J., 2013. Investigating nicotinic acetylcholine receptor expression in neonicotinoid resistant Myzus persicae FRC. Pesticide Biochemistry and Physiology 107, 293–298. https://doi.org/10.1016/j.pestbp.2013.08.005
  • Casida, J.E., 2018. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annual Review of Entomology 63, 125–144. https://doi.org/10.1146/annurev-ento-020117-043042
  • Casida, J.E., Durkin, K.A., 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology 58, 99–117. https://doi.org/10.1146/annurev-ento-120811-153645
  • Crespin, L., Legros, C., List, O., Tricoire-Leignel, H., Mattei, C., 2016. Injection of insect membrane in Xenopus oocyte: an original method for the pharmacological characterization of neonicotinoid insecticides. Journal of Pharmacological and Toxicological Methods 77, 10–16. https://doi.org/10.1016/j.vascn.2015.09.004
  • Dederer, H., Werr, M., Ilg, T., 2011. Differential sensitivity of Ctenocephalides felis and Drosophila melanogaster nicotinic acetylcholine receptor α1 and α2 subunits in recombinant hybrid receptors to nicotinoids and neonicotinoid insecticides. Insect Biochemistry and Molecular Biology 41, 51–61. https://doi.org/10.1016/j.ibmb.2010.09.012
  • Dupuis, J.P., Gauthier, M., Raymond-Delpech, V., 2011. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. Journal of Neurophysiology 106, 1604–1613. https://doi.org/10.1152/jn.00126.2011
  • Dupuis, J., Louis, T., Gauthier, M., Raymond, V., 2012. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neuroscience & Biobehavioral Reviews 36, 1553–1564. https://doi.org/10.1016/j.neubiorev.2012.04.003
  • Jones, A.K., Raymond-Delpech, V., Thany, S.H., Gauthier, M., Sattelle, D.B., 2006. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Research 16, 1422–30. https://doi.org/10.1101/gr.4549206
  • ffrench-Constant, R.H., Williamson, M.S., Davies, T.G.E., Bass, C., 2016. Ion channels as insecticide targets. Journal of Neurogenetics 30, 163–177. https://doi.org/10.1080/01677063.2016.1229781
  • Honda, H., Tomizawa, M., Casida, J.E., 2006. Insect nicotinic acetylcholine receptors:  neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. J. Agric. Food Chem. 54, 3365–3371. https://doi.org/10.1021/jf0601517
  • Ihara, M., Shimomura, M., Ishida, C., Nishiwaki, H., Akamatsu, M., Sattelle, D.B., Matsuda, K., 2007. A hypothesis to account for the selective and diverse actions of neonicotinoid insecticides at their molecular targets, nicotinic acetylcholine receptors: catch and release in hydrogen bond networks. Invert Neurosci 7, 47–51. https://doi.org/10.1007/s10158-006-0043-x
  • Ihara, M., Sattelle, D.B., Matsuda, K., 2015. Probing new components (loop G and the α–α interface) of neonicotinoid binding sites on nicotinic acetylcholine receptors. Pesticide Biochemistry and Physiology, Insecticide and Acaricide Modes of Action and their Role in Resistance and its Management 121, 47–52. https://doi.org/10.1016/j.pestbp.2015.02.011
  • Ihara, M., Hikida, M., Matsushita, H., Yamanaka, K., Kishimoto, Y., Kubo, K., Watanabe, S., Sakamoto, M., Matsui, K., Yamaguchi, A., Okuhara, D., Furutani, S., Sattelle, D.B., Matsuda, K., 2018. Loops D, E and G in the Drosophila Dα1 subunit contribute to high neonicotinoid sensitivity of Dα1-chicken β2 nicotinic acetylcholine receptor. British Journal of Pharmacology 175, 1999–2012. https://doi.org/10.1111/bph.13914
  • Kayser, H., Lee, C., Decock, A., Baur, M., Haettenschwiler, J., Maienfisch, P., 2004. Comparative analysis of neonicotinoid binding to insect membranes: I. A structure–activity study of the mode of [3H]imidacloprid displacement in Myzus persicae and Aphis craccivora. Pest Management Science 60, 945–958. https://doi.org/10.1002/ps.919
  • Kayser, H., Lehmann, K., Gomes, M., Schleicher, W., Dotzauer, K., Moron, M., Maienfisch, P., 2016. Binding of imidacloprid, thiamethoxam and N-desmethylthiamethoxam to nicotinic receptors of Myzus persicae: pharmacological profiling using neonicotinoids, natural agonists and antagonists. Pest Management Science 72, 2166–2175. https://doi.org/10.1002/ps.4249
  • LaLone, C.A., Villeneuve, D.L., Wu-Smart, J., Milsk, R.Y., Sappington, K., Garber, K.V., Housenger, J., Ankley, G.T., 2017. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. Sci Total Environ 584–585, 751–775. https://doi.org/10.1016/j.scitotenv.2017.01.113
  • Lansdell, S.J., Collins, T., Goodchild, J., Millar, N.S., 2012. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels. BMC Neuroscience 13, 73. https://doi.org/10.1186/1471-2202-13-73
  • Liu, Z., Williamson, M.S., Lansdell, S.J., Denholm, I., Han, Z., Millar, N.S., 2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). PNAS 102, 8420–8425. https://doi.org/10.1073/pnas.0502901102
  • Longhurst, C., Babcock, J.M., Denholm, I., Gorman, K., Thomas, J.D., Sparks, T.C., 2013. Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Management Science 69, 809–813. https://doi.org/10.1002/ps.3439
  • Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B., 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences 22, 573–580. https://doi.org/10.1016/S0165-6147(00)01820-4
  • Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Sattelle, D.B., 2005. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Bioscience, Biotechnology, and Biochemistry 69, 1442–1452. https://doi.org/10.1271/bbb.69.1442
  • Matsuda, K., Kanaoka, S., Akamatsu, M., Sattelle, D.B., 2009. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 76, 1–10. https://doi.org/10.1124/mol.109.055186
  • Meng, X., Zhang, Y., Guo, B., Sun, H., Liu, C., Liu, Z., 2015. Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata. Neuroscience Letters 584, 123–128. https://doi.org/10.1016/j.neulet.2014.10.013
  • Millar, N.S., Denholm, I., 2007. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci 7, 53–66. https://doi.org/10.1007/s10158-006-0040-0
  • Perry, T., Somers, J., Yang, Y.T., Batterham, P., 2015. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction. Insect Biochemistry and Molecular Biology 64, 106–115. https://doi.org/10.1016/j.ibmb.2015.01.017
  • Pyakurel, P., Shin, M., Venton, B.J., 2018. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochemistry International 114, 33–41. https://doi.org/10.1016/j.neuint.2017.12.012
  • Qu, Y., Chen, J., Li, C., Wang, Q., Guo, W., Han, Z., Jiang, W., 2016. The subunit gene Ldα1 of nicotinic acetylcholine receptors plays important roles in the toxicity of imidacloprid and thiamethoxam against Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology 127, 51–58. https://doi.org/10.1016/j.pestbp.2015.09.006
  • Rinkevich, F.D., Bourgeois, L., 2020. In silico identification and assessment of insecticide target sites in the genome of the small hive beetle, Aethina tumida. BMC Genomics 21, 154. https://doi.org/10.1186/s12864-020-6551-y
  • Selvam, B., Graton, J., Laurent, A.D., Alamiddine, Z., Mathé-Allainmat, M., Lebreton, J., Coqueret, O., Olivier, C., Thany, S.H., Le Questel, J.-Y., 2015. Imidacloprid and thiacloprid neonicotinoids bind more favourably to cockroach than to honeybee α6 nicotinic acetylcholine receptor: Insights from computational studies. Journal of Molecular Graphics and Modelling 55, 1–12. https://doi.org/10.1016/j.jmgm.2014.10.018
  • Shao, X., Xia, S., Durkin, K.A., Casida, J.E., 2013. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist. PNAS 110, 17273–17277. https://doi.org/10.1073/pnas.1316369110
  • Shimomura, M., Yokota, M., Ihara, M., Akamatsu, M., Sattelle, D.B., Matsuda, K., 2006. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol Pharmacol 70, 1255–1263. https://doi.org/10.1124/mol.106.026815
  • Shimomura, M., Okuda, H., Matsuda, K., Komai, K., Akamatsu, M., Sattelle, D.B., 2002. Effects of mutations of a glutamine residue in loop D of the α7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. British Journal of Pharmacology 137, 162–169. https://doi.org/10.1038/sj.bjp.0704848
  • Mesquita, R. da S., Kyrylchuk, A., Grafova, I., Kliukovskyi, D., Bezdudnyy, A., Rozhenko, A., Tadei, W.P., Leskelä, M., Grafov, A., 2020. Synthesis, molecular docking studies, and larvicidal activity evaluation of new fluorinated neonicotinoids against Anopheles darlingi larvae. PLOS ONE 15, e0227811. https://doi.org/10.1371/journal.pone.0227811
  • Taillebois, E., Beloula, A., Quinchard, S., Jaubert-Possamai, S., Daguin, A., Servent, D., Tagu, D., Thany, S.H., Tricoire-Leignel, H., 2014. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum. PLOS ONE 9, e96669. https://doi.org/10.1371/journal.pone.0096669
  • Taillebois, E., Cartereau, A., Jones, A.K., Thany, S.H., 2018. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. Pesticide Biochemistry and Physiology 151, 59–66. https://doi.org/10.1016/J.PESTBP.2018.04.007
  • Tan, J., Galligan, J.J., Hollingworth, R.M., 2007. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. NeuroToxicology 28, 829–842. https://doi.org/10.1016/j.neuro.2007.04.002
  • Thany, S.H., Lenaers, G., Crozatier, M., Armengaud, C., Gauthier, M., 2003. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Molecular Biology 12, 255–262. https://doi.org/10.1046/j.1365-2583.2003.00409.x
  • Thany, S.H., Crozatier, M., Raymond-Delpech, V., Gauthier, M., Lenaers, G., 2005. Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 344, 125–132. https://doi.org/10.1016/J.GENE.2004.09.010
  • Thany, S.H., Lenaers, G., Raymond-Delpech, V., Sattelle, D.B., Lapied, B., 2007. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences 28, 14–22. https://doi.org/10.1016/J.TIPS.2006.11.006
  • Tomizawa, M., Casida, J.E., 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology 48, 339–364. https://doi.org/10.1146/annurev.ento.48.091801.112731
  • Tomizawa, M., Casida, J.E., 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology 45, 247–268. https://doi.org/10.1146/annurev.pharmtox.45.120403.095930
  • Tomizawa, M., Millar, N.S., Casida, J.E., 2005. Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors. Insect Biochemistry and Molecular Biology 35, 1347–1355. https://doi.org/10.1016/j.ibmb.2005.08.006
  • Tomizawa, M., Casida, J.E., 2009. Molecular recognition of neonicotinoid insecticides: the determinants of life or death. Acc. Chem. Res. 42, 260–269. https://doi.org/10.1021/ar800131p
  • Tomizawa, M., Maltby, D., Talley, T.T., Durkin, K.A., Medzihradszky, K.F., Burlingame, A.L., Taylor, P., Casida, J.E., 2008. Atypical nicotinic agonist bound conformations conferring subtype selectivity. PNAS 105, 1728–1732. https://doi.org/10.1073/pnas.0711724105
  • Weill, M., Berthomieu, A., Berticat, C., Lutfalla, G., Nègre, V., Pasteur, N., Philips, A., Leonetti, J.-P., Fort, P., Raymond, M., 2004. Insecticide resistance: a silent base prediction. Current Biology 14, R552–R553. https://doi.org/10.1016/j.cub.2004.07.008
  • Wellmann, H., Gomes, M., Lee, C., Kayser, H., 2004. Comparative analysis of neonicotinoid binding to insect membranes: II. An unusual high affinity site for [3H]thiamethoxam in Myzus persicae and Aphis craccivora. Pest Management Science 60, 959–970. https://doi.org/10.1002/ps.920
  • Xu, G., Wu, S.-F., Teng, Z.-W., Yao, H.-W., Fang, Q., Huang, J., Ye, G.-Y., 2017. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae). Insect Science 24, 371–384. https://doi.org/10.1111/1744-7917.12324
  • Yao, X., Song, F., Chen, F., Zhang, Y., Gu, J., Liu, S., Liu, Z., 2008. Amino acids within loops D, E and F of insect nicotinic acetylcholine receptor β subunits influence neonicotinoid selectivity. Insect Biochemistry and Molecular Biology 38, 834–840. https://doi.org/10.1016/j.ibmb.2008.05.009
  • Zhang, Y., Liu, S., Gu, J., Song, F., Yao, X., Liu, Z., 2008. Imidacloprid acts as an antagonist on insect nicotinic acetylcholine receptor containing the Y151M mutation. Neuroscience Letters 446, 97–100. https://doi.org/10.1016/j.neulet.2008.09.039

Pesticides

  • Bass, C., Field, L.M., 2018. Neonicotinoids. Current Biology 28, R772–R773. https://doi.org/10.1016/j.cub.2018.05.061
  • Bonmatin, J.-M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D., Noome, D.A., Simon-Delso, N., Tapparo, A., 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7
  • Crossthwaite, A.J., Bigot, A., Camblin, P., Goodchild, J., Lind, R.J., Slater, R., Maienfisch, P., 2017. The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. Journal of Pesticide Science 42, 67–83. https://doi.org/10.1584/jpestics.D17-019
  • Cutler, P., Slater, R., Edmunds, A.J., Maienfisch, P., Hall, R.G., Earley, F.G., Pitterna, T., Pal, S., Paul, V.-L., Goodchild, J., Blacker, M., Hagmann, L., Crossthwaite, A.J., 2013. Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Management Science 69, 607–619. https://doi.org/10.1002/ps.3413
  • Jeschke, P., Nauen, R., 2008. Neonicotinoids - from zero to hero in insecticide chemistry. Pest Management Science 64, 1084–1098. https://doi.org/10.1002/ps.1631
  • Jeschke, P., Nauen, R., Schindler, M., Elbert, A., 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry 59, 2897–2908. https://doi.org/10.1021/jf101303g
  • Jeschke, P., Nauen, R., Beck, M.E., 2013. Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angewandte Chemie International Edition 52, 9464–9485. https://doi.org/10.1002/anie.201302550
  • Jeschke, P., Nauen, R., Gutbrod, O., Beck, M.E., Matthiesen, S., Haas, M., Velten, R., 2015. Flupyradifurone (Sivanto™) and its novel butenolide pharmacophore: structural considerations. Pesticide Biochemistry and Physiology 121, 31–38. https://doi.org/10.1016/j.pestbp.2014.10.011
  • Liu, Z., Williamson, M.S., Lansdell, S.J., Han, Z., Denholm, I., Millar, N.S., 2006. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. Journal of Neurochemistry 99, 1273–1281. https://doi.org/10.1111/j.1471-4159.2006.04167.x
  • Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B., 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences 22, 573–580. https://doi.org/10.1016/S0165-6147(00)01820-4
  • Nauen, R., Jeschke, P., Velten, R., Beck, M.E., Ebbinghaus‐Kintscher, U., Thielert, W., Wölfel, K., Haas, M., Kunz, K., Raupach, G., 2015. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Management Science 71, 850–862. https://doi.org/10.1002/ps.3932
  • Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J.P., Whitehorn, P.R., Wiemers, M., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22, 5–34. https://doi.org/10.1007/s11356-014-3470-y
  • Somers, J., Nguyen, J., Lumb, C., Batterham, P., Perry, T., 2015. In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. Insect Biochemistry and Molecular Biology 64, 116–127. https://doi.org/10.1016/j.ibmb.2015.01.018
  • Somers, J., Luong, H.N.B., Batterham, P., Perry, T., 2018. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost? Fly 12, 46–54. https://doi.org/10.1080/19336934.2017.1396399
  • Sparks, T.C., Watson, G.B., Loso, M.R., Geng, C., Babcock, J.M., Thomas, J.D., 2013. Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pesticide Biochemistry and Physiology 107, 1–7. https://doi.org/10.1016/j.pestbp.2013.05.014
  • Thany, S.H., 2010. Neonicotinoid insecticides, in: Thany, S.H. (Ed.), Insect Nicotinic Acetylcholine Receptors, Advances in Experimental Medicine and Biology. Springer, New York, NY, pp. 75–83. https://doi.org/10.1007/978-1-4419-6445-8_7
  • Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.-R., Yuan, Z., Martínez, M.-A., 2018. Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annual Review of Pharmacology and Toxicology 58, 471–507. https://doi.org/10.1146/annurev-pharmtox-010617-052429
  • Watson, G.B., Olson, M.B., Beavers, K.W., Loso, M.R., Sparks, T.C., 2017. Characterization of a nicotinic acetylcholine receptor binding site for sulfoxaflor, a new sulfoximine insecticide for the control of sap-feeding insect pests. Pesticide Biochemistry and Physiology 143, 90–94. https://doi.org/10.1016/j.pestbp.2017.09.003
  • Watson, G.B., Loso, M.R., Babcock, J.M., Hasler, J.M., Letherer, T.J., Young, C.D., Zhu, Y., Casida, J.E., Sparks, T.C., 2011. Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. Insect Biochemistry and Molecular Biology, Special Issue: Toxicology and Resistance 41, 432–439. https://doi.org/10.1016/j.ibmb.2011.01.009
  • Zhu, Y., Loso, M.R., Watson, Gerald.B., Sparks, T.C., Rogers, R.B., Huang, J.X., Gerwick, B.C., Babcock, J.M., Kelley, D., Hegde, V.B., Nugent, B.M., Renga, J.M., Denholm, I., Gorman, K., DeBoer, G.J., Hasler, J., Meade, T., Thomas, J.D., 2011. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J. Agric. Food Chem. 59, 2950–2957. https://doi.org/10.1021/jf102765x

Larval exposure

  • Azpiazu, C., Bosch, J., Viñuela, E., Medrzycki, P., Teper, D., Sgolastra, F., 2019. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports 9, 1–11. https://doi.org/10.1038/s41598-019-50255-4
  • Christesen, D., Yang, Y.T., Somers, J., Robin, C., Sztal, T., Batterham, P., Perry, T., 2017. Transcriptome analysis of Drosophila melanogaster third instar larval ring glands points to novel functions and uncovers a cytochrome P450 required for development. G3: Genes, Genomes, Genetics 7, 467–479. https://doi.org/10.1534/g3.116.037333
  • Dai, P., Jack, C.J., Mortensen, A.N., Bustamante, T.A., Bloomquist, J.R., Ellis, J.D., 2019. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. Pest Management Science 75, 29–36. https://doi.org/10.1002/ps.5124
  • Derecka, K., Blythe, M.J., Malla, S., Genereux, D.P., Guffanti, A., Pavan, P., Moles, A., Snart, C., Ryder, T., Ortori, C.A., Barrett, D.A., Schuster, E., Stöger, R., 2013. Transient exposure to low levels of insecticide affects metabolic networks of honey bee larvae. PLOS ONE 8, e68191. https://doi.org/10.1371/journal.pone.0068191
  • Friol, P.S., Catae, A.F., Tavares, D.A., Malaspina, O., Roat, T.C., 2017. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees? Chemosphere 185, 56–66. https://doi.org/10.1016/j.chemosphere.2017.06.113
  • Glavinic, U., Tesovnik, T., Stevanovic, J., Zorc, M., Cizelj, I., Stanimirovic, Z., Narat, M., 2019. Response of adult honey bees treated in larval stage with prochloraz to infection with Nosema ceranae. PeerJ 7, e6325. https://doi.org/10.7717/peerj.6325
  • Human, H., Archer, C.R., du Rand, E.E., Pirk, C.W.W., Nicolson, S.W., 2014. Resistance of developing honeybee larvae during chronic exposure to dietary nicotine. Journal of Insect Physiology 69, 74–79. https://doi.org/10.1016/j.jinsphys.2014.03.012
  • Mogren, C.L., Danka, R.G., Healy, K.B., 2019. Larval pollen stress increases adult susceptibility to clothianidin in honey bees. Insects 10, 21. https://doi.org/10.3390/insects10010021
  • Nicholls, E., Fowler, R., Niven, J.E., Gilbert, J.D., Goulson, D., 2017. Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, Osmia bicornis. PeerJ 5, e3417. https://doi.org/10.7717/peerj.3417
  • Papach, A., Fortini, D., Grateau, S., Aupinel, P., Richard, F.-J., 2017. Larval exposure to thiamethoxam and American foulbrood: effects on mortality and cognition in the honey bee Apis mellifera. Journal of Apicultural Research 56, 475–486. https://doi.org/10.1080/00218839.2017.1332541
  • Mesquita, R. da S., Kyrylchuk, A., Grafova, I., Kliukovskyi, D., Bezdudnyy, A., Rozhenko, A., Tadei, W.P., Leskelä, M., Grafov, A., 2020. Synthesis, molecular docking studies, and larvicidal activity evaluation of new fluorinated neonicotinoids against Anopheles darlingi larvae. PLOS ONE 15, e0227811. https://doi.org/10.1371/journal.pone.0227811
  • Tadei, R., Domingues, C.E.C., Malaquias, J.B., Camilo, E.V., Malaspina, O., Silva-Zacarin, E.C.M., 2019. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Scientific Reports 9, 3277. https://doi.org/10.1038/s41598-019-39383-z
  • Tavares, D.A., Dussaubat, C., Kretzschmar, A., Carvalho, S.M., Silva-Zacarin, E.C.M., Malaspina, O., Bérail, G., Brunet, J.-L., Belzunces, L.P., 2017. Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental Pollution 229, 386–393. https://doi.org/10.1016/j.envpol.2017.05.092
  • Tavares, D.A., Roat, T.C., Carvalho, S.M., Silva-Zacarin, E.C.M., Malaspina, O., 2015. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135, 370–378. https://doi.org/10.1016/j.chemosphere.2015.04.090
  • Tavares, D.A., Roat, T.C., Silva-Zacarin, E.C.M., Nocelli, R.C.F., Malaspina, O., 2019. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. Ecotoxicology and Environmental Safety 169, 523–528. https://doi.org/10.1016/j.ecoenv.2018.11.048
  • Vázquez, D.E., Ilina, N., Pagano, E.A., Zavala, J.A., Farina, W.M., 2018. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLOS ONE 13, e0205074. https://doi.org/10.1371/journal.pone.0205074
  • Wade, A., Lin, C.-H., Kurkul, C., Regan, E., Johnson, R., Wade, A., Lin, C.-H., Kurkul, C., Regan, E.R., Johnson, R.M., 2019. Combined toxicity of insecticides and fungicides applied to California almond orchards to honey bee larvae and adults. Insects 10, 20. https://doi.org/10.3390/insects10010020
  • Wang, K., Fan, R.-L., Ji, W.-N., Zhang, W.-W., Chen, X.-M., Wang, S., Yin, L., Gao, F.-C., Chen, G.-H., Ji, T., 2018. Transcriptome analysis of newly emerged honeybees exposure to sublethal carbendazim during larval stage. Frontiers in Genetics 9, 426. https://doi.org/10.3389/fgene.2018.00426
  • Whitehorn, P.R., Norville, G., Gilburn, A., Goulson, D., 2018. Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. PeerJ 6, e4772. https://doi.org/10.7717/peerj.4772
  • Wu, J.Y., Anelli, C.M., Sheppard, W.S., 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLOS ONE 6, e14720. https://doi.org/10.1371/journal.pone.0014720
  • Wu, M.-C., Chang, Y.-W., Lu, K.-H., Yang, E.-C., 2017. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochemistry and Molecular Biology 88, 12–20. https://doi.org/10.1016/j.ibmb.2017.06.016
  • Zhu, W., Schmehl, D.R., Mullin, C.A., Frazier, J.L., 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLOS ONE 9, e77547. https://doi.org/10.1371/journal.pone.0077547
  • Smith Dylan B., Arce Andres N., Ramos Rodrigues Ana, Bischoff Philipp H., Burris Daisy, Ahmed Farah and Gill Richard J. 2020. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebeesProc. R. Soc. B.28720192442 http://doi.org/10.1098/rspb.2019.2442
  • Claus et al. 2021. Larval oral exposure to thiacloprid: Dose-response toxicity testing in solitary bees, Osmia spp. (Hymenoptera: Megachilidae) Author links open overlay panel: https://doi.org/10.1016/j.ecoenv.2021.112143

Routes of exposure

  • Bonmatin, J.-M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D., Noome, D.A., Simon-Delso, N., Tapparo, A., 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7
  • Hladik, M.L., Vandever, M., Smalling, K.L., 2016. Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Science of The Total Environment 542, 469–477. https://doi.org/10.1016/j.scitotenv.2015.10.077
  • Kopit, A.M., Pitts-Singer, T.L., 2018. Routes of pesticide exposure in solitary, cavity-nesting bees. Environmental Entomology 47, 499–510. https://doi.org/10.1093/ee/nvy034
  • Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., Given, K., 2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLOS ONE 7, e29268. https://doi.org/10.1371/journal.pone.0029268
  • Radolinski, J., Wu, J., Xia, K., Hession, W.C., Stewart, R.D., 2019. Plants mediate precipitation-driven transport of a neonicotinoid pesticide. Chemosphere 222, 445–452. https://doi.org/10.1016/j.chemosphere.2019.01.150
  • Siviter, H., Bailes, E.J., Martin, C.D. et al. Agrochemicals interact synergistically to increase bee mortality. Nature (2021). https://doi.org/10.1038/s41586-021-03787-7

Economic value

  • Bauer, D.M., Sue Wing, I., 2016. The macroeconomic cost of catastrophic pollinator declines. Ecological Economics 126, 1–13. https://doi.org/10.1016/j.ecolecon.2016.01.011
  • Breeze, T.D., Gallai, N., Garibaldi, L.A., Li, X.S., 2016. Economic measures of pollination services: Shortcomings and future directions. Trends in Ecology & Evolution 31, 927–939. https://doi.org/10.1016/j.tree.2016.09.002
  • Carreck, N., Williams, I., 1998. The economic value of bees in the UK. Bee World 79, 115–123. https://doi.org/10.1080/0005772X.1998.11099393
  • Gallai, N., Salles, J.-M., Settele, J., Vaissière, B.E., 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014
  • Garratt, M.P.D., Breeze, T.D., Jenner, N., Polce, C., Biesmeijer, J.C., Potts, S.G., 2014a. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems & Environment 184, 34–40. https://doi.org/10.1016/j.agee.2013.10.032
  • Garratt, M.P.D., Coston, D.J., Truslove, C.L., Lappage, M.G., Polce, C., Dean, R., Biesmeijer, J.C., Potts, S.G., 2014b. The identity of crop pollinators helps target conservation for improved ecosystem services. Biological Conservation 169, 128–135. https://doi.org/10.1016/j.biocon.2013.11.001
  • Hanley, N., Breeze, T.D., Ellis, C., Goulson, D., 2015. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosystem Services 14, 124–132. https://doi.org/10.1016/j.ecoser.2014.09.013
  • Leonhardt, S.D., Gallai, N., Garibaldi, L.A., Kuhlmann, M., Klein, A.-M., 2013. Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic and Applied Ecology 14, 461–471. https://doi.org/10.1016/j.baae.2013.06.003
  • Melathopoulos, A.P., Cutler, G.C., Tyedmers, P., 2015. Where is the value in valuing pollination ecosystem services to agriculture? Ecological Economics 109, 59–70. https://doi.org/10.1016/j.ecolecon.2014.11.007
  • Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., Whitbread, A., 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation 151, 53–59. https://doi.org/10.1016/j.biocon.2012.01.068
  • Vanbergen, A.J., Heard, M.S., Breeze, T.D., Potts, S.G., Hanley, N., 2014. Status and value of pollinators and pollination services (No. PH0514), Department for Environment, Food and Rural Affairs (Defra).
  • Winfree, R., Gross, B.J., Kremen, C., 2011. Valuing pollination services to agriculture. Ecological Economics 71, 80–88. https://doi.org/10.1016/j.ecolecon.2011.08.001

Methylation

  • Brevik K., Lindström L., McKay S., Chen Y., 2018. Transgenerational effects of insecticides — implications for rapid pest evolution in agroecosystems. Current Opinion in Insect Science 26, 34-40. https://doi.org/10.1016/j.cois.2017.12.007
  • Brevik K., Bueno E. M., McKay S., Schoville S. D., Chen Y., 2020. Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata. Evolutionary Applications. https://doi.org/10.1111/eva.13153
  • Hollie Marshall, Alun R C Jones, Zoë N Lonsdale, Eamonn B Mallon, Bumblebee Workers Show Differences in Allele-Specific DNA Methylation and Allele-Specific Expression, Genome Biology and Evolution, Volume 12, Issue 8, August 2020, Pages 1471–1481, https://doi.org/10.1093/gbe/evaa132 METHODS
  • Navin Elango, Brendan G. Hunt, Michael A. D. Goodisman, Soojin V. Yi, 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proceedings of the National Academy of Sciences, 106 (27) 11206-11211; DOI: 10.1073/pnas.0900301106
  • Robert A. Drewell, Eliot C. Bush, Emily J. Remnant, Garrett T. Wong, Suzannah M. Beeler, Jessica L. Stringham, Julianne Lim, Benjamin P. Oldroyd. 2014. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera Development 141:2702-2711; doi: 10.1242/dev.110163
  • Amarasinghe Harindra E., Clayton Crisenthiya I. and Mallon Eamonn B. 2014. Methylation and worker reproduction in the bumble-bee (Bombus terrestris) Proc. R. Soc. B.28120132502 http://doi.org/10.1098/rspb.2013.2502 METHODS BUMBEBEE
  • "Epigenetics in an ecotoxicological context" https://doi.org/10.1016/j.mrgentox.2013.08.008

Testing

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published