-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
307 additions
and
0 deletions.
There are no files selected for viewing
11 changes: 11 additions & 0 deletions
11
examples/healthcare/application/TED_CT_Detection/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
# Convolutional Prototype Learning | ||
|
||
We have successfully applied the idea of prototype loss in various medical image classification task to improve performance, for example detection thyroid eye disease from CT images. Here we provide the implementation of the convolution prototype model in Singa. Due to data privacy, we are not able to release the CT image dataset used. The training scripts `./train.py` demonstrate how to apply this model on cifar-10 dataset. | ||
|
||
## run | ||
|
||
At Singa project root directory `python examples/healthcare/application/TED_CT_Detection/train.py` | ||
|
||
## reference | ||
|
||
[Robust Classification with Convolutional Prototype Learning](https://arxiv.org/abs/1805.03438) |
115 changes: 115 additions & 0 deletions
115
examples/healthcare/application/TED_CT_Detection/model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
from singa import layer | ||
from singa import model | ||
import singa.tensor as tensor | ||
from singa import autograd | ||
from singa.tensor import Tensor | ||
|
||
class CPLayer(layer.Layer): | ||
def __init__(self, prototype_count=2, temp=10.0): | ||
super(CPLayer, self).__init__() | ||
self.prototype_count = prototype_count | ||
self.temp = temp | ||
|
||
def initialize(self, x): | ||
self.feature_dim = x.shape[1] | ||
self.prototype = tensor.random((self.feature_dim, self.prototype_count), device = x.device) | ||
|
||
def forward(self, feat): | ||
self.device_check(feat, self.prototype) | ||
self.dtype_check(feat, self.prototype) | ||
|
||
# print(f'feat: {feat.shape}') | ||
# print(f'prototype: {self.prototype.shape}') | ||
feat_sq = autograd.mul(feat, feat) | ||
feat_sq_sum = autograd.reduce_sum(feat_sq, axes=[1], keepdims=1) | ||
# print(f'feat sq sum: {feat_sq_sum.shape}') | ||
# print(f'feature_dim {self.feature_dim}') | ||
feat_sq_sum_tile = autograd.tile(feat_sq_sum, repeats=[1, self.feature_dim]) | ||
|
||
# print(f'feat sq sum tile: {feat_sq_sum_tile.shape}') | ||
prototype_sq = autograd.mul(self.prototype, self.prototype) | ||
prototype_sq_sum = autograd.reduce_sum(prototype_sq, axes=[0], keepdims=1) | ||
# print(f'prototype sq sum: {prototype_sq_sum.shape}') | ||
prototype_sq_sum_tile = autograd.tile(prototype_sq_sum, repeats=feat.shape[0]) | ||
# print(f'prototype sq sum tile: {prototype_sq_sum_tile.shape}') | ||
|
||
cross_term = autograd.matmul(feat, self.prototype) | ||
cross_term_scale = Tensor(shape=cross_term.shape, device=cross_term.device, requires_grad=False).set_value(-2) | ||
cross_term_scaled = autograd.mul(cross_term, cross_term_scale) | ||
# print(f'cross term scaled: {cross_term_scaled.shape}') | ||
|
||
dist = autograd.add(feat_sq_sum_tile, prototype_sq_sum_tile) | ||
dist = autograd.add(dist, cross_term_scaled) | ||
# print(f'dist: {dist.shape}') | ||
|
||
logits_coeff = tensor.ones((feat.shape[0], self.prototype.shape[1]), device=feat.device)*-1.0/self.temp | ||
logits_coeff.requires_grad = False | ||
logits = autograd.mul(logits_coeff, dist) | ||
|
||
|
||
return logits | ||
|
||
def get_params(self): | ||
return {self.prototype.name: self.prototype} | ||
|
||
def set_params(self, parameters): | ||
self.prototype.copy_from(parameters[self.prototype.name]) | ||
|
||
|
||
class CPL(model.Model): | ||
|
||
def __init__(self, backbone: model.Model, prototype_count=2, lamb = 0.5, temp =10, label=None, prototype_weight=None): | ||
super(CPL, self).__init__() | ||
# config | ||
self.lamb = lamb | ||
self.prototype_weight = prototype_weight | ||
self.prototype_label = label | ||
|
||
# layer | ||
self.backbone = backbone | ||
self.cplayer = CPLayer(prototype_count=prototype_count, temp=temp) | ||
# optimizer | ||
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() | ||
|
||
|
||
def forward(self, x): | ||
feat = self.backbone.forward(x) | ||
logits =self.cplayer(feat) | ||
return logits | ||
|
||
def train_one_batch(self, x, y, dist_option, spars): | ||
out = self.forward(x) | ||
# print(f'out: {out.shape}') | ||
loss = self.softmax_cross_entropy(out, y) | ||
# print(f'loss: {loss.shape}') | ||
self.optimizer(loss) | ||
return out, loss | ||
|
||
|
||
def set_optimizer(self, optimizer): | ||
self.optimizer = optimizer | ||
|
||
|
||
def create_model(backbone, prototype_count=2, lamb = 0.5, temp = 10.0): | ||
model = CPL(backbone, prototype_count=prototype_count, lamb=lamb, temp=temp) | ||
return model | ||
|
||
__all__ = ['CPL', 'create_model'] |
181 changes: 181 additions & 0 deletions
181
examples/healthcare/application/TED_CT_Detection/train.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
from singa import device | ||
from singa import opt | ||
from singa import tensor | ||
import argparse | ||
import numpy as np | ||
import time | ||
from PIL import Image | ||
|
||
import sys | ||
sys.path.append('.') | ||
print(sys.path) | ||
|
||
import examples.cnn.model.cnn as cnn | ||
from examples.cnn.data import cifar10 | ||
import model as cpl | ||
|
||
def accuracy(pred, target): | ||
# y is network output to be compared with ground truth (int) | ||
y = np.argmax(pred, axis=1) | ||
a = y == target | ||
correct = np.array(a, "int").sum() | ||
return correct | ||
|
||
|
||
def resize_dataset(x, image_size): | ||
num_data = x.shape[0] | ||
dim = x.shape[1] | ||
X = np.zeros(shape=(num_data, dim, image_size, image_size), | ||
dtype=np.float32) | ||
for n in range(0, num_data): | ||
for d in range(0, dim): | ||
X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize( | ||
(image_size, image_size), Image.BILINEAR), | ||
dtype=np.float32) | ||
return X | ||
|
||
|
||
def run(local_rank, | ||
max_epoch, | ||
batch_size, | ||
sgd, | ||
graph, | ||
verbosity, | ||
dist_option='plain', | ||
spars=None): | ||
dev = device.create_cuda_gpu_on(local_rank) | ||
dev.SetRandSeed(0) | ||
np.random.seed(0) | ||
|
||
train_x, train_y, val_x, val_y = cifar10.load() | ||
|
||
num_channels = train_x.shape[1] | ||
image_size = train_x.shape[2] | ||
data_size = np.prod(train_x.shape[1:train_x.ndim]).item() | ||
num_classes = (np.max(train_y) + 1).item() | ||
|
||
backbone = cnn.create_model(num_channels = num_channels, num_classes = num_classes) | ||
model = cpl.create_model(backbone, prototype_count=10, lamb=0.5, temp=10) | ||
|
||
|
||
if backbone.dimension == 4: | ||
tx = tensor.Tensor((batch_size, num_channels, backbone.input_size, backbone.input_size), dev) | ||
train_x = resize_dataset(train_x, backbone.input_size) | ||
val_x = resize_dataset(val_x, backbone.input_size) | ||
elif backbone.dimension == 2: | ||
tx = tensor.Tensor((batch_size, data_size), dev) | ||
np.reshape(train_x, (train_x.shape[0], -1)) | ||
np.reshape(val_x, (val_x.shape[0], -1)) | ||
|
||
ty = tensor.Tensor((batch_size,), dev, tensor.int32) | ||
num_train_batch = train_x.shape[0] // batch_size | ||
num_val_batch = val_x.shape[0] // batch_size | ||
idx = np.arange(train_x.shape[0], dtype=np.int32) | ||
|
||
model.set_optimizer(sgd) | ||
model.compile([tx], is_train=True, use_graph=graph, sequential=True) | ||
dev.SetVerbosity(verbosity) | ||
|
||
for epoch in range(max_epoch): | ||
print(f'Epoch {epoch}') | ||
start_time = time.time() | ||
np.random.shuffle(idx) | ||
|
||
train_correct = np.zeros(shape=[1], dtype=np.float32) | ||
test_correct = np.zeros(shape=[1], dtype=np.float32) | ||
train_loss = np.zeros(shape=[1], dtype=np.float32) | ||
|
||
model.train() | ||
for b in range(num_train_batch): | ||
x = train_x[idx[b*batch_size:(b+1)*batch_size]] | ||
y = train_y[idx[b * batch_size:(b+1)*batch_size]] | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
out, loss = model(tx, ty, dist_option, spars) | ||
train_correct += accuracy(tensor.to_numpy(out), y) | ||
train_loss += tensor.to_numpy(loss)[0] | ||
print('Training loss = %f, training accuracy = %f' % | ||
(train_loss, train_correct / | ||
(num_train_batch * batch_size)), | ||
flush=True) | ||
|
||
model.eval() | ||
for b in range(num_val_batch): | ||
x = val_x[b*batch_size:(b+1)*batch_size] | ||
y = val_y[b*batch_size:(b+1)*batch_size] | ||
|
||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
out_test = model(tx, ty, dist_option='fp32', spars=None) | ||
test_correct += accuracy(tensor.to_numpy(out_test), y) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Train a CPL model') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=20, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
parser.add_argument('-b', | ||
'--batch-size', | ||
default=64, | ||
type=int, | ||
help='batch size', | ||
dest='batch_size') | ||
parser.add_argument('-l', | ||
'--learning-rate', | ||
default=0.005, | ||
type=float, | ||
help='initial learning rate', | ||
dest='lr') | ||
parser.add_argument('-i', | ||
'--device-id', | ||
default=0, | ||
type=int, | ||
help='which GPU to use', | ||
dest='device_id') | ||
parser.add_argument('-g', | ||
'--disable-graph', | ||
default='True', | ||
action='store_false', | ||
help='disable graph', | ||
dest='graph') | ||
parser.add_argument('-v', | ||
'--log-verbosity', | ||
default=0, | ||
type=int, | ||
help='logging verbosity', | ||
dest='verbosity') | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5) | ||
run(args.device_id, | ||
args.max_epoch, | ||
args.batch_size, | ||
sgd, | ||
args.graph, | ||
args.verbosity) |