Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support compute return types from argument values (not just their DataTypes) #8985

Merged
merged 22 commits into from
Feb 15, 2024
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
142 changes: 139 additions & 3 deletions datafusion/core/tests/user_defined/user_defined_scalar_functions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,16 @@ use arrow_schema::{DataType, Field, Schema};
use datafusion::prelude::*;
use datafusion::{execution::registry::FunctionRegistry, test_util};
use datafusion_common::cast::as_float64_array;
use datafusion_common::{assert_batches_eq, cast::as_int32_array, Result, ScalarValue};
use datafusion_common::{
assert_batches_eq, assert_batches_sorted_eq, cast::as_int32_array, not_impl_err,
plan_err, DataFusionError, ExprSchema, Result, ScalarValue,
};
use datafusion_expr::{
create_udaf, create_udf, Accumulator, ColumnarValue, LogicalPlanBuilder, ScalarUDF,
ScalarUDFImpl, Signature, Volatility,
create_udaf, create_udf, Accumulator, ColumnarValue, ExprSchemable,
LogicalPlanBuilder, ScalarUDF, ScalarUDFImpl, Signature, Volatility,
};
use rand::{thread_rng, Rng};
use std::any::Any;
use std::iter;
use std::sync::Arc;

Expand Down Expand Up @@ -494,6 +498,127 @@ async fn test_user_defined_functions_zero_argument() -> Result<()> {
Ok(())
}

#[derive(Debug)]
struct TakeUDF {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here is an example of the feature working

signature: Signature,
}

impl TakeUDF {
fn new() -> Self {
Self {
signature: Signature::any(3, Volatility::Immutable),
}
}
}

/// Implement a ScalarUDFImpl whose return type is a function of the input values
impl ScalarUDFImpl for TakeUDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"take"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
not_impl_err!("Not called because the return_type_from_exprs is implemented")
}

/// This function returns the type of the first or second argument based on
/// the third argument:
///
/// 1. If the third argument is '0', return the type of the first argument
/// 2. If the third argument is '1', return the type of the second argument
fn return_type_from_exprs(
&self,
arg_exprs: &[Expr],
schema: &dyn ExprSchema,
) -> Result<DataType> {
if arg_exprs.len() != 3 {
return plan_err!("Expected 3 arguments, got {}.", arg_exprs.len());
}

let take_idx = if let Some(Expr::Literal(ScalarValue::Int64(Some(idx)))) =
arg_exprs.get(2)
{
if *idx == 0 || *idx == 1 {
*idx as usize
} else {
return plan_err!("The third argument must be 0 or 1, got: {idx}");
}
} else {
return plan_err!(
"The third argument must be a literal of type int64, but got {:?}",
arg_exprs.get(2)
);
};

arg_exprs.get(take_idx).unwrap().get_type(schema)
}

// The actual implementation
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
let take_idx = match &args[2] {
ColumnarValue::Scalar(ScalarValue::Int64(Some(v))) if v < &2 => *v as usize,
_ => unreachable!(),
};
match &args[take_idx] {
ColumnarValue::Array(array) => Ok(ColumnarValue::Array(array.clone())),
ColumnarValue::Scalar(_) => unimplemented!(),
}
}
}

#[tokio::test]
async fn verify_udf_return_type() -> Result<()> {
// Create a new ScalarUDF from the implementation
let take = ScalarUDF::from(TakeUDF::new());

// SELECT
// take(smallint_col, double_col, 0) as take0,
// take(smallint_col, double_col, 1) as take1
// FROM alltypes_plain;
let exprs = vec![
take.call(vec![col("smallint_col"), col("double_col"), lit(0_i64)])
.alias("take0"),
take.call(vec![col("smallint_col"), col("double_col"), lit(1_i64)])
.alias("take1"),
];

let ctx = SessionContext::new();
register_alltypes_parquet(&ctx).await?;

let df = ctx.table("alltypes_plain").await?.select(exprs)?;

let schema = df.schema();

// The output schema should be
// * type of column smallint_col (int32)
// * type of column double_col (float64)
assert_eq!(schema.field(0).data_type(), &DataType::Int32);
assert_eq!(schema.field(1).data_type(), &DataType::Float64);

let expected = [
"+-------+-------+",
"| take0 | take1 |",
"+-------+-------+",
"| 0 | 0.0 |",
"| 0 | 0.0 |",
"| 0 | 0.0 |",
"| 0 | 0.0 |",
"| 1 | 10.1 |",
"| 1 | 10.1 |",
"| 1 | 10.1 |",
"| 1 | 10.1 |",
"+-------+-------+",
];
assert_batches_sorted_eq!(&expected, &df.collect().await?);

Ok(())
}

fn create_udf_context() -> SessionContext {
let ctx = SessionContext::new();
// register a custom UDF
Expand Down Expand Up @@ -531,6 +656,17 @@ async fn register_aggregate_csv(ctx: &SessionContext) -> Result<()> {
Ok(())
}

async fn register_alltypes_parquet(ctx: &SessionContext) -> Result<()> {
let testdata = datafusion::test_util::parquet_test_data();
ctx.register_parquet(
"alltypes_plain",
&format!("{testdata}/alltypes_plain.parquet"),
ParquetReadOptions::default(),
)
.await?;
Ok(())
}

/// Execute SQL and return results as a RecordBatch
async fn plan_and_collect(ctx: &SessionContext, sql: &str) -> Result<Vec<RecordBatch>> {
ctx.sql(sql).await?.collect().await
Expand Down
40 changes: 22 additions & 18 deletions datafusion/expr/src/expr_schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -28,35 +28,37 @@ use crate::{utils, LogicalPlan, Projection, Subquery};
use arrow::compute::can_cast_types;
use arrow::datatypes::{DataType, Field};
use datafusion_common::{
internal_err, plan_datafusion_err, plan_err, Column, DFField, DFSchema,
DataFusionError, ExprSchema, Result,
internal_err, plan_datafusion_err, plan_err, Column, DFField, DataFusionError,
ExprSchema, Result,
};
use std::collections::HashMap;
use std::sync::Arc;

/// trait to allow expr to typable with respect to a schema
pub trait ExprSchemable {
/// given a schema, return the type of the expr
fn get_type<S: ExprSchema>(&self, schema: &S) -> Result<DataType>;
fn get_type(&self, schema: &dyn ExprSchema) -> Result<DataType>;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I had to change the traits to use dyn dispatch rather than generics so that the UDF could use the same object (and e.g. not have to create its own copy of these methods for Expr)

I expect this to have 0 performance impact, but I will run the planning benchmarks to be sure if this acceptable

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I ran

cargo bench --bench sql_planner

And the results looked good ( within the noise threshold / reported 1% slower which I don't attribute to this change)


/// given a schema, return the nullability of the expr
fn nullable<S: ExprSchema>(&self, input_schema: &S) -> Result<bool>;
fn nullable(&self, input_schema: &dyn ExprSchema) -> Result<bool>;

/// given a schema, return the expr's optional metadata
fn metadata<S: ExprSchema>(&self, schema: &S) -> Result<HashMap<String, String>>;
fn metadata(&self, schema: &dyn ExprSchema) -> Result<HashMap<String, String>>;

/// convert to a field with respect to a schema
fn to_field(&self, input_schema: &DFSchema) -> Result<DFField>;
fn to_field(&self, input_schema: &dyn ExprSchema) -> Result<DFField>;

/// cast to a type with respect to a schema
fn cast_to<S: ExprSchema>(self, cast_to_type: &DataType, schema: &S) -> Result<Expr>;
fn cast_to(self, cast_to_type: &DataType, schema: &dyn ExprSchema) -> Result<Expr>;
}

impl ExprSchemable for Expr {
/// Returns the [arrow::datatypes::DataType] of the expression
/// based on [ExprSchema]
///
/// Note: [DFSchema] implements [ExprSchema].
/// Note: [`DFSchema`] implements [ExprSchema].
///
/// [`DFSchema`]: datafusion_common::DFSchema
///
/// # Examples
///
Expand Down Expand Up @@ -90,7 +92,7 @@ impl ExprSchemable for Expr {
/// expression refers to a column that does not exist in the
/// schema, or when the expression is incorrectly typed
/// (e.g. `[utf8] + [bool]`).
fn get_type<S: ExprSchema>(&self, schema: &S) -> Result<DataType> {
fn get_type(&self, schema: &dyn ExprSchema) -> Result<DataType> {
match self {
Expr::Alias(Alias { expr, name, .. }) => match &**expr {
Expr::Placeholder(Placeholder { data_type, .. }) => match &data_type {
Expand Down Expand Up @@ -136,7 +138,7 @@ impl ExprSchemable for Expr {
fun.return_type(&arg_data_types)
}
ScalarFunctionDefinition::UDF(fun) => {
Ok(fun.return_type(&arg_data_types)?)
Ok(fun.return_type_from_exprs(args, schema)?)
}
ScalarFunctionDefinition::Name(_) => {
internal_err!("Function `Expr` with name should be resolved.")
Expand Down Expand Up @@ -213,14 +215,16 @@ impl ExprSchemable for Expr {

/// Returns the nullability of the expression based on [ExprSchema].
///
/// Note: [DFSchema] implements [ExprSchema].
/// Note: [`DFSchema`] implements [ExprSchema].
///
/// [`DFSchema`]: datafusion_common::DFSchema
///
/// # Errors
///
/// This function errors when it is not possible to compute its
/// nullability. This happens when the expression refers to a
/// column that does not exist in the schema.
fn nullable<S: ExprSchema>(&self, input_schema: &S) -> Result<bool> {
fn nullable(&self, input_schema: &dyn ExprSchema) -> Result<bool> {
match self {
Expr::Alias(Alias { expr, .. })
| Expr::Not(expr)
Expand Down Expand Up @@ -327,7 +331,7 @@ impl ExprSchemable for Expr {
}
}

fn metadata<S: ExprSchema>(&self, schema: &S) -> Result<HashMap<String, String>> {
fn metadata(&self, schema: &dyn ExprSchema) -> Result<HashMap<String, String>> {
match self {
Expr::Column(c) => Ok(schema.metadata(c)?.clone()),
Expr::Alias(Alias { expr, .. }) => expr.metadata(schema),
Expand All @@ -339,7 +343,7 @@ impl ExprSchemable for Expr {
///
/// So for example, a projected expression `col(c1) + col(c2)` is
/// placed in an output field **named** col("c1 + c2")
fn to_field(&self, input_schema: &DFSchema) -> Result<DFField> {
fn to_field(&self, input_schema: &dyn ExprSchema) -> Result<DFField> {
match self {
Expr::Column(c) => Ok(DFField::new(
c.relation.clone(),
Expand Down Expand Up @@ -370,7 +374,7 @@ impl ExprSchemable for Expr {
///
/// This function errors when it is impossible to cast the
/// expression to the target [arrow::datatypes::DataType].
fn cast_to<S: ExprSchema>(self, cast_to_type: &DataType, schema: &S) -> Result<Expr> {
fn cast_to(self, cast_to_type: &DataType, schema: &dyn ExprSchema) -> Result<Expr> {
let this_type = self.get_type(schema)?;
if this_type == *cast_to_type {
return Ok(self);
Expand All @@ -394,10 +398,10 @@ impl ExprSchemable for Expr {
}

/// return the schema [`Field`] for the type referenced by `get_indexed_field`
fn field_for_index<S: ExprSchema>(
fn field_for_index(
expr: &Expr,
field: &GetFieldAccess,
schema: &S,
schema: &dyn ExprSchema,
) -> Result<Field> {
let expr_dt = expr.get_type(schema)?;
match field {
Expand Down Expand Up @@ -457,7 +461,7 @@ mod tests {
use super::*;
use crate::{col, lit};
use arrow::datatypes::{DataType, Fields};
use datafusion_common::{Column, ScalarValue, TableReference};
use datafusion_common::{Column, DFSchema, ScalarValue, TableReference};

macro_rules! test_is_expr_nullable {
($EXPR_TYPE:ident) => {{
Expand Down
Loading
Loading