- Basic usage: python train.py data_directory
Prints out training loss, validation loss, and validation accuracy as the network trains
-
Set directory to save checkpoints: python train.py data_dir --save_dir save_directory
-
Choose architecture: python train.py data_dir --arch "vgg13"
-
Set hyperparameters: python train.py data_dir --learning_rate 0.01 --hidden_units 512 --epochs 20
-
Use GPU for training: python train.py data_dir --gpu
- Basic usage: python predict.py /path/to/image checkpoint
-
Return top KK most likely classes: python predict.py input checkpoint --top_k 3
-
Use a mapping of categories to real names: python predict.py input checkpoint --category_names cat_to_name.json
-
Use GPU for inference: python predict.py input checkpoint --gpu