forked from RyanZotti/Self-Driving-Car
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Ryan Zotti
authored and
Ryan Zotti
committed
Jul 9, 2016
1 parent
352bab5
commit 76747d6
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
from sklearn.externals import joblib | ||
|
||
''' | ||
Helpful notes | ||
- Excellent source explaining convoluted neural networks: | ||
http://cs231n.github.io/convolutional-networks/ | ||
- Output size of a conv layer is computed by (W−F+2P)/S+1 | ||
W = input volumne size | ||
F = field size of conv neuron | ||
S = stride size | ||
P = zero padding size | ||
(240-6+2)/2=118 | ||
(320-6+2)/2=158 | ||
(28-5+2)/2 | ||
''' | ||
|
||
input_file_path = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/final_processed_data_3_channels.npz' | ||
npzfile = np.load(input_file_path) | ||
|
||
# training data | ||
train_predictors = npzfile['train_predictors'] | ||
train_targets = npzfile['train_targets'] | ||
|
||
# validation/test data | ||
validation_predictors = npzfile['validation_predictors'] | ||
validation_targets = npzfile['validation_targets'] | ||
|
||
sess = tf.InteractiveSession() | ||
|
||
def next_batch(size, predictors, targets): | ||
record_count = predictors.shape[0] | ||
shuffle_index = np.arange(record_count) | ||
np.random.shuffle(shuffle_index) | ||
predictors = predictors[shuffle_index] | ||
targets = targets[shuffle_index] | ||
return predictors[:size], targets[:size] | ||
|
||
def weight_variable(shape): | ||
initial = tf.truncated_normal(shape, stddev=0.1) | ||
return tf.Variable(initial) | ||
|
||
def bias_variable(shape): | ||
initial = tf.constant(0.1, shape=shape) | ||
return tf.Variable(initial) | ||
|
||
def conv2d(x, W): | ||
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') | ||
|
||
def max_pool_2x2(x): | ||
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], | ||
strides=[1, 2, 2, 1], padding='SAME') | ||
|
||
x = tf.placeholder(tf.float32, shape=[None, 240, 320, 3]) | ||
y_ = tf.placeholder(tf.float32, shape=[None, 3]) | ||
|
||
W_conv1 = weight_variable([6, 6, 3, 4]) | ||
b_conv1 = bias_variable([4]) | ||
h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1) | ||
h_pool1 = max_pool_2x2(h_conv1) | ||
|
||
W_conv2 = weight_variable([6, 6, 4, 4]) | ||
b_conv2 = bias_variable([4]) | ||
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) | ||
h_pool2 = max_pool_2x2(h_conv2) | ||
|
||
W_conv3 = weight_variable([6, 6, 4, 4]) | ||
b_conv3 = bias_variable([4]) | ||
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3) | ||
h_pool3 = max_pool_2x2(h_conv3) | ||
|
||
W_conv4 = weight_variable([6, 6, 4, 4]) | ||
b_conv4 = bias_variable([4]) | ||
h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4) | ||
h_pool4 = max_pool_2x2(h_conv4) | ||
|
||
W_fc1 = weight_variable([15 * 20 * 4, 4]) | ||
b_fc1 = bias_variable([4]) | ||
|
||
h_pool4_flat = tf.reshape(h_pool4, [-1, 15 * 20 * 4]) | ||
h_fc1 = tf.nn.relu(tf.matmul(h_pool4_flat, W_fc1) + b_fc1) | ||
|
||
keep_prob = tf.placeholder(tf.float32) | ||
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) | ||
|
||
W_fc2 = weight_variable([4, 3]) | ||
b_fc2 = bias_variable([3]) | ||
|
||
saver = tf.train.Saver() | ||
saver.restore(sess, "/Users/ryanzotti/Documents/repos/Self-Driving-Car/trained_model/model.ckpt") | ||
|
||
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) | ||
|
||
#prediction=tf.argmax(y_conv,1) | ||
#digit = prediction.eval(feed_dict={x_: my_image,keep_prob: 1.0}, session=sess)[0] | ||
|
||
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) | ||
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | ||
|
||
print("test accuracy %g"%accuracy.eval(feed_dict={ | ||
x: validation_predictors, y_: validation_targets, keep_prob: 1.0})) | ||
|
||
print('Finished.') |