Skip to content

Commit

Permalink
writes line by line to big file
Browse files Browse the repository at this point in the history
  • Loading branch information
Ryan Zotti authored and Ryan Zotti committed Oct 9, 2016
1 parent e18fb11 commit 078d847
Showing 1 changed file with 59 additions and 0 deletions.
59 changes: 59 additions & 0 deletions npz_to_h2o_csv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import numpy as np
import pandas as pd
import os


# H2O wants one column only for multinomial targets
# ex1: [0,0,1] -> [2]
# ex2: [1,0,0] -> [0]
# ex3: [0,1,0] -> [1]
def format_targets(df):
df['targets']="Up"
df.loc[(df[0]==1),'targets']="Left"
df.loc[(df[2]==1),'targets']="Right"
df['targets']=df['targets'].astype('category')
return df

def separate_by_commas(row):
line = ""
for element in row:
line += ","+str(element)
line = line[1:] # skip first command (,1,2,3,4)
return line

data_path = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/data'
output_data_path = data_path + "/" + 'h2O_frame.csv'
data_folders = os.listdir(data_path)

for folder in data_folders:
input_file_path = data_path + '/' + folder + '/predictors_and_targets.npz'
npzfile = np.load(input_file_path)
predictors = npzfile['predictors']
targets = npzfile['targets']
targets_pd = format_targets(pd.DataFrame(targets))
targets_np = np.array([targets_pd['targets']]).T
record_count = predictors.shape[0]
flat_data = predictors.reshape([record_count,240*320*3])
flat_data = np.concatenate((flat_data, targets_np), axis=1)
flat_data = pd.DataFrame(flat_data)
for row in flat_data.iterrows():
with open(output_data_path,'a') as file_writer:
line = separate_by_commas(row[1]) # first element is just a pandas index
file_writer.write(line)
print("Processed "+str(folder))
print("Finished.")

input_file_path = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/data_115.npz'


# training data
train_predictors = npzfile['train_predictors']
train_targets = npzfile['train_targets']
train_record_count = train_predictors.shape[0]
train_predictors = train_predictors.reshape([train_record_count,240*320*3])
train_targets_pd = format_targets(pd.DataFrame(train_targets))
train_targets_np = np.array([train_targets_pd['targets']]).T
train = np.concatenate((train_predictors,train_targets_np),axis=1)
train = pd.DataFrame(train)
train.to_csv(path_or_buf='/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/h2o_train.csv')

0 comments on commit 078d847

Please sign in to comment.