基于bert的命名实体识别,pytorch实现,支持中英文
python3
pip3 install -r requirements.txt
--bert_model is the pre_trained pytorch bert model path(pytorch), must contains: pytorch_model.bin、vocab.txt、bert_config.json
If tensorflow bert model(download from https://github.com/google-research/bert), should convert to pytoch bert model as follow command:
python3 convert_tf_checkpoint_to_pytorch.py --tf_checkpoint_path ../bert_model.ckpt --bert_config_file ../bert_config.json --pytorch_dump_path ../pytorch_model.bin
Recommend to download and use the converted model
python3 run_ner.py --data_dir=data/ --bert_model=base-cased --task_name=ner --output_dir=output --max_seq_length=64 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.4
Chinese NER(train corpus in data folder is small part of people daily news for quick start, recommend to download)
python3 run_ner.py --data_dir=data/ --bert_model=chinese-base-uncased --task_name=chinese_ner --output_dir=output --max_seq_length=64 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.4
链接:https://pan.baidu.com/s/1TNcsx6zGCKjN_KY2It7hyA 提取码:mlmd
precision recall f1-score support
MISC 0.9407 0.9304 0.9355 273
LOC 0.9650 0.9881 0.9764 419
PER 0.9844 0.9783 0.9813 322
ORG 0.9794 0.9852 0.9822 337
avg / total 0.9683 0.9734 0.9708 1351
precision recall f1-score support
ORG 0.9152 0.9073 0.9113 464
PER 0.9767 0.9692 0.9730 260
LOC 0.9397 0.9263 0.9330 353
MISC 0.8276 0.9014 0.8629 213
avg / total 0.9198 0.9240 0.9217 1290
python3 predict.py
{'2': {'tag': 'B_T', 'confidence': 0.9999847412109375}, '0': {'tag': 'I_T', 'confidence': 0.9989903569221497}, '1': {'tag': 'I_T', 'confidence': 0.9995298385620117}, '4': {'tag': 'I_T', 'confidence': 0.9996459484100342}, '年': {'tag': 'I_T', 'confidence': 0.9996104836463928}, '新': {'tag': 'O', 'confidence': 0.9995424747467041}, '的': {'tag': 'O', 'confidence': 0.9997028708457947}, '开': {'tag': 'O', 'confidence': 0.9999663829803467}, '始': {'tag': 'O', 'confidence': 0.9999591112136841}, ',王': {'tag': 'O', 'confidence': 0.9999748468399048}, '兴': {'tag': 'I_PER', 'confidence': 0.9997753500938416}, '很': {'tag': 'O', 'confidence': 0.9993890523910522}, '高': {'tag': 'O', 'confidence': 0.9992743134498596}, '兴': {'tag': 'O', 'confidence': 0.9999097585678101}}
or refer:
from bert import Ner
model = Ner("output/")
output = model.predict("Steve went to Paris")
print(output)
# {
# "Steve": {
# "tag": "B-PER",
# "confidence": 0.999879002571106
# },
# "went": {
# "tag": "O",
# "confidence": 0.9968552589416504
# },
# "to": {
# "tag": "O",
# "confidence": 0.9996656179428101
# },
# "Paris": {
# "tag": "B-LOC",
# "confidence": 0.999504804611206
# }
# }