A Tensorflow implementation of keras-YOLOv3. Now I am ported to k210 ~
This code lacks scalability and good measurements during training, so I rewrote a K210 Yolo v3 framework.
See requirements.txt
-
download dataset:
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar tar xf VOCtrainval_11-May-2012.tar tar xf VOCtrainval_06-Nov-2007.tar tar xf VOCtest_06-Nov-2007.tar
-
Generate annotation file and class names file.
One row for one image;
Row format:image_file_path box1 box2 ... boxN
;
Box format:x_min,y_min,x_max,y_max,class_id
(no space).
For VOC dataset, trypython3 voc_annotation.py your-path/VOCdevkit/ cat 2007_*.txt 2012_*.txt > train.txt
Here is an example:
path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3 path/to/img2.jpg 120,300,250,600,2 ...
usage: train.py [-h] [--alpha {0.5,0.75,1.0}]
[--annotation_path ANNOTATION_PATH]
[--weights_path WEIGHTS_PATH] [--learning_rate LEARNING_RATE]
[--classes_path CLASSES_PATH] [--anchors_path ANCHORS_PATH]
[--epochs EPOCHS] [--augment {True,False}]
-
train mobilenet yolo3 alpha = xx
python3 train.py --alpha xx
-
load pre-train model
python3 train.py --weights_path logs/xxxx-xxxx/yolo_model_body.h5
NOTE: Default training 10 epochs,data augment = True
python3 yolo_video.py --model logs/xxxxxxxx/yolo_model_body.h5 --anchors model_data/tiny_yolo_anchors.txt --classes model_data/voc_classes.txt --image
Then type the image path.
You can try with the model which I trained the 20 epochs mobilenet 0.75 model:
python3 ./yolo_video.py --model model_data/yolo_model_body_75.h5 --anchors model_data/tiny_yolo_anchors.txt --classes model_data/voc_classes.txt --image
Then type model_data/people.jpg
:
toco --output_file yolo_model.tflite --keras_model_file logs/xxxxxxxx/yolo_model_body.h5
Please use latest nncase
ncc -i tflite -o k210model --channelwise-output --dataset ./images mobile_yolo.tflite ./yolo.kmodel
Use Kflash.py download kpu_yolov3_test/kfpkg/kpu_yolov3.kfpkg
to KD233 board:
kflash kpu_yolov3_test/kfpkg/kpu_yolov3.kfpkg -B kd233 -p /dev/ttyUSB0 -b 2000000 -t
NOTE: I've just shown the most basic example to prove the validity of the model if you need to use at least the non-maximum suppression between multiple layers of output in your code.
If you have any issue, contact me by QQ:597323109
or email:[email protected]
-
Default anchors are used. If you use your own anchors, probably some changes are needed.
-
The inference result is not totally the same as Darknet but the difference is small.
-
The speed is slower than Darknet. Replacing PIL with opencv may help a little.
-
Always load pretrained weights in the first stage of training. Or try Darknet training. It's OK if there is a mismatch warning.
-
The training strategy is for reference only. Adjust it according to your dataset and your goal. And add further strategy if needed.
-
For speeding up the training process with frozen layers train_bottleneck.py can be used. It will compute the bottleneck features of the frozen model first and then only trains the last layers. This makes training on CPU possible in a reasonable time. See this for more information on bottleneck features.