Skip to content

Commit

Permalink
Run VS no hail
Browse files Browse the repository at this point in the history
Run VS no hail
  • Loading branch information
rocreguant authored Mar 4, 2024
1 parent ba1f92a commit 822d576
Showing 1 changed file with 157 additions and 0 deletions.
157 changes: 157 additions & 0 deletions examples/notebooks/run_importance_chr22.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Running importance analysis with Python API\n",
"=====================================\n",
"\n",
"This is an *VariantSpark* example notebook.\n",
"\n",
"\n",
"One of the main applications of VariantSpark is discovery of genomic variants correlated with a response variable (e.g. case vs control) using random forest gini importance.\n",
"\n",
"The `chr22_1000.vcf` is a very small sample of the chromosome 22 VCF file from the 1000 Genomes Project.\n",
"\n",
"`chr22-labels.csv` is a CSV file with sample response variables (labels). In fact the labels directly represent the number of alternative alleles for each sample at a specific genomic position. E.g.: column 22_16050408 has labels derived from variants in chromosome 22 position 16050408. We would expect then that position 22:16050408 in the VCF file is strongly correlated with the label 22_16050408.\n",
"\n",
"Both data sets are located in the `..\\data` directory.\n",
"\n",
"This notebook demonstrates how to run importance analysis on these data with *VariantSpark* Python API."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 1: Create a spark session with VariantSpark jar attached."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import varspark as vs\n",
"from pyspark.sql import SparkSession \n",
"spark = SparkSession.builder.config('spark.jars', vs.find_jar()).getOrCreate()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 2: Create a `VarsparkContext` using `SparkSession` object (here injected as `spark`):"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"vc = vs.VarsparkContext(spark, silent = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 3: Load the features `fs` and labels `ls` from data files."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"features = vc.import_vcf('../data/chr22_1000.vcf')\n",
"labels = vc.load_label('../data/chr22-labels.csv', '22_16050408')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 4: Run the importance analysis and retrieve top important variables:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"ia = features.importance_analysis(labels, seed = 13, n_trees=500, batch_size=20)\n",
"top_variables = ia.important_variables()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 5: Display the results."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Variable\tImportance\n",
"22_16050408_T_C\t0.000875899681306875\n",
"22_16050678_C_T\t0.0008045828330856887\n",
"22_16053197_G_T\t0.0006258776975143016\n",
"22_16051882_C_T\t0.0005914004839298169\n",
"22_16051107_C_A\t0.0005911526429890821\n",
"22_16051480_T_C\t0.0005362221508961817\n",
"22_16052838_T_A\t0.0004994650434540958\n",
"22_16052656_T_C\t0.0004932212678113746\n",
"22_16053435_G_T\t0.00046980813216784275\n",
"22_16054283_C_T\t0.0004692021189492525\n"
]
}
],
"source": [
"print(\"%s\\t%s\" % ('Variable', 'Importance'))\n",
"for var_and_imp in top_variables:\n",
" print(\"%s\\t%s\" % var_and_imp) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For more information on using *VariantSpark* and the Python API please visit the [documentation](http://variantspark.readthedocs.io/en/latest/)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit 822d576

Please sign in to comment.