Skip to content
/ py-mmm Public

Unsupervised clustering of sequences of arbitrary length using mixture of discrete-state markov models.

Notifications You must be signed in to change notification settings

adrz/py-mmm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Overview

Unsupervised clustering of sequences of arbitrary length using mixture of discrete-state markov models.

For more informations about the model, see Chap 23 pp Barber, David. Bayesian reasoning and machine learning. Cambridge University Press, 2012. APA (available: http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwik)

Installation

$ git clone [email protected]:adrz/py-mmm.git
$ cd py-mmm
$ virtualenv -p python3 env
$ source env/bin/activate
$ pip install -r requirements.txt

Example of code

Clustering a mixted length sequences. The number of states is 5, and the number of wished clusters is 3:

from pymmm.mmm import MixtureMarkovChains
import numpy as np

model = MixtureMarkovChains(n_cluster=3)

observations = [[0, 2, 2, 2, 4],
                [0, 1, 2, 4, 4, 4, 1, 1, 1],
                [0, 3, 2, 2, 2, 1, 1, 1],
                [0, 1, 2, 2, 2, 1, 1, 1],
                [0, 2, 2, 2, 2, 2, 1, 1, 1],
                [0, 1, 2, 2, 2, 1, 1, 1],
                [0, 3, 2, 2, 2, 4, 0, 1],
                [0, 1, 2, 1, 2, 0, 0, 0, 1]]
model.fit(observations)


z_training = model.predict(observations)

observation_testing = [[0, 3, 2, 0, 0, 1, 1, 1],
                       [0, 3, 2, 2, 2, 1, 1, 1],
                       [0, 1, 1, 1, 2, 2, 1, 1]]

z_testing = model.predict(observation_testing)

# Posterior:training
print('Posterior training')
print(z_training)
print('Label training')
print(np.argmax(z_training, 0))

print('Posterior testing')
print(z_testing)
print('Label testing')
print(np.argmax(z_testing, 0))

About

Unsupervised clustering of sequences of arbitrary length using mixture of discrete-state markov models.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages