Skip to content

Commit

Permalink
Caught up with everything bar P&M
Browse files Browse the repository at this point in the history
  • Loading branch information
Zentrik committed Oct 30, 2023
1 parent d481fdc commit 528e34d
Show file tree
Hide file tree
Showing 15 changed files with 232 additions and 88 deletions.
Binary file modified AFL.pdf
Binary file not shown.
Binary file modified Graph_Theory.pdf
Binary file not shown.
42 changes: 21 additions & 21 deletions ProbAndMeasure/01_measures.tex
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ \subsection{Definitions}
\[ \sigma(\mathcal A) = \qty{A \subseteq E \colon A \in \mathcal E \text{ for all $\sigma$-algebras } \mathcal E \supseteq \mathcal A} \]
So it is the smallest $\sigma$-algebra containing $\mathcal A$.
Equivalently,
\[ \sigma(\mathcal A) = \bigcap_{\mathcal E \supseteq \mathcal A, \mathcal E \text{ a $\sigma$-algebra}} \mathcal E \]
\[ \sigma(\mathcal A) = \bigcap_{\mathcal E \supseteq \mathcal A,\ \mathcal E \text{ a $\sigma$-algebra}} \mathcal E \]
\end{definition}

\begin{question}
Expand Down Expand Up @@ -131,7 +131,7 @@ \subsection{Rings and algebras}

\begin{proof}
For $B \subseteq E$, we define the \emph{outer measure} $\mu^\star$ as
\[ \mu^\star(B) = \inf \qty{\sum_{n \in \mathbb N} \mu(A_n), A_n \in \mathcal A, B \subseteq \bigcup_{n \in \mathbb N} A_n} \]
\[ \mu^\star(B) = \inf \qty{\sum_{n \in \mathbb N} \mu(A_n) : A_n \in \mathcal A, B \subseteq \bigcup_{n \in \mathbb N} A_n} \]
If there is no sequence $A_n$ such that $B \subseteq \bigcup_{n \in \mathbb N} A_n$, we declare the outer measure $\mu^\star(B)$ to be $\infty$.
Clearly, $\mu^\star(\emptyset)$ and $\mu^\star$ is increasing, so $\mu^\star$ is an increasing set fcn on $\mathcal{P}(E)$.

Expand All @@ -140,8 +140,8 @@ \subsection{Rings and algebras}
\end{definition}

We define the class
\[ \mathcal M = \qty{A \subseteq E \mid A \text{ is $\mu^\star$ measurable}} \]
We shall show that $M$ is a $\sigma$-algebra that contains $\mathcal{A}$, $\mu^\star \mid_M$ is a measure on $M$ that extends $\mu$ (i.e. $\mu^\star \mid_\mathcal{A} = \mu$).
\[ \mathcal M = \qty{A \subseteq E : A \text{ is $\mu^\star$ measurable}} \]
We shall show that $M$ is a $\sigma$-algebra that contains $\mathcal{A}$, $\mu^\star \mid_M$ is a measure on $M$ that extends $\mu$ (i.e. $\eval{\mu^\star}_\mathcal{A} = \mu$).

\emph{Step 1.} $\mu^\star$ is countably sub-additive on $\mathcal P(E)$:
It suffices to prove that for $B \subseteq E$ and $B_n \subseteq E$ such that $B \subseteq \bigcup_n B_n$ we have
Expand All @@ -150,12 +150,12 @@ \subsection{Rings and algebras}
\tag{\(\dagger\)}
\end{equation}
We can assume without loss of generality that $\mu^\star(B_n) < \infty$ for all $n$, otherwise there is nothing to prove.
For all $\varepsilon > 0$ there exists a collection $A_{n,m} \in \mathcal{A}$ such that $B_n \subseteq \bigcup_m A_{n,m}$ and
\[ \mu^\star(B_n) + \frac{\varepsilon}{2^n} \geq \sum_m \mu(A_{n,m}) \]
For all $\epsilon > 0$ there exists a collection $A_{n,m} \in \mathcal{A}$ such that $B_n \subseteq \bigcup_m A_{n,m}$ and
\[ \mu^\star(B_n) + \frac{\epsilon}{2^n} \geq \sum_m \mu(A_{n,m}) \]
as we took an infimum.
Now, since $\mu^\star$ is increasing, and $B \subseteq \bigcup_n B_n \subseteq \bigcup_n \bigcup_m A_{n,m}$, we have
\[ \mu^\star(B) \leq \mu^\star\qty(\bigcup_{n,m} A_{n,m}) \leq \sum_{n,m} \mu(A_{n,m}) \leq \sum_n \mu^\star(B_n) + \sum_n \frac{\varepsilon}{2^n} = \sum_n \mu^\star(B_n) + \varepsilon \]
Since $\varepsilon$ was arbitrary in the construction, $(\dagger)$ follows by construction.
\[ \mu^\star(B) \leq \mu^\star\qty(\bigcup_{n,m} A_{n,m}) \leq \sum_{n,m} \mu(A_{n,m}) \leq \sum_n \mu^\star(B_n) + \sum_n \frac{\epsilon}{2^n} = \sum_n \mu^\star(B_n) + \epsilon \]
Since $\epsilon$ was arbitrary in the construction, $(\dagger)$ follows by construction.

\emph{Step 2.} $\mu^\star$ extends $\mu$:
Let $A \in \mathcal A$, and we want to show $\mu^\star(A) = \mu(A)$.
Expand All @@ -178,16 +178,16 @@ \subsection{Rings and algebras}
We have $B \subseteq (B \cap A) \cup (B \cap A^c) \cup \emptyset \cup \dots$, hence by countable subadditivity $(\dagger)$, $\mu^\star(B) \leq \mu^\star(B \cap A) + \mu^\star(B \cap A^c)$.

It now suffices to prove the converse, that $\mu^\star(B) \geq \mu^\star(B \cap A) + \mu^\star(B \cap A^c)$. \\
We can assume $\mu^\star(B)$ is finite, and so $\forall \; \epsilon > 0 \; \exists \; A_n \in \mathcal A$ s.t. $B \subseteq \bigcup_n A_n$ and $\mu^\star(B) + \varepsilon \geq \sum_n \mu(A_n)$.
We can assume $\mu^\star(B)$ is finite, and so $\forall \; \epsilon > 0 \; \exists \; A_n \in \mathcal A$ s.t. $B \subseteq \bigcup_n A_n$ and $\mu^\star(B) + \epsilon \geq \sum_n \mu(A_n)$.
Now, $B \cap A \subseteq \bigcup_n (A_n \cap A)$, and $B \cap A^c \subseteq \bigcup_n (A_n \cap A^c)$.
All of the members of these two unions are elements of $\mathcal A$, since $A_n \cap A^c = A_n \setminus A$.
Therefore,
\begin{align*}
\mu^\star(B \cap A) + \mu^\star(B \cap A^c) &\leq \sum_n \mu(A_n \cap A) + \sum_n \mu(A_n \cap A^c) \\
&\leq \sum_n \qty[ \mu(A_n \cap A) + \mu(A_n \cap A^c) ] \\
&\leq \sum_n \mu(A_n) \leq \mu^\star(B) + \varepsilon
&\leq \sum_n \mu(A_n) \leq \mu^\star(B) + \epsilon
\end{align*}
Since $\varepsilon$ was arbitrary, $\mu^\star(B) = \mu^\star(B \cap A) + \mu^\star(B \cap A^c)$ as required.
Since $\epsilon$ was arbitrary, $\mu^\star(B) = \mu^\star(B \cap A) + \mu^\star(B \cap A^c)$ as required.

\emph{Step 4.} $\mathcal M$ is an algebra:
Clearly $\emptyset$ lies in $\mathcal M$, and by the symmetry in the definition of $\mathcal M$, complements lie in $\mathcal M$.
Expand Down Expand Up @@ -284,7 +284,7 @@ \subsection{Uniqueness of extension}
It suffices to prove that $\mathcal D$ is a $\pi$-system, because then it is a $\sigma$-algebra\footnote{As $\mathcal{D} \supseteq \mathcal{A}$ and $\sigma(\mathcal{A})$ the intersection of all $\sigma$-algebras containing $\mathcal{A}$, $\mathcal{D} \supseteq \sigma(\mathcal{A})$.}.

We now define
\[ \mathcal D' = \qty{B \in \mathcal D \mid \forall A \in \mathcal A, B \cap A \in \mathcal D} \]
\[ \mathcal D' = \qty{B \in \mathcal D : \forall A \in \mathcal A, B \cap A \in \mathcal D} \]
We can see that $\mathcal A \subseteq \mathcal{D}'$, as $\mathcal A$ is a $\pi$-system.

We now show that $\mathcal D'$ is a $d$-system, fix $A \in \mathcal{A}$.
Expand All @@ -302,7 +302,7 @@ \subsection{Uniqueness of extension}
Thus $\mathcal D = \mathcal D'$, i.e $\forall \; B \in \mathcal{D}$ and $A \in \mathcal{A}, B \cap A \in \mathcal{D} \ (\ast)$.

We then define
\[ \mathcal D'' = \qty{B \in \mathcal D \mid \forall A \in \mathcal D, B \cap A \in \mathcal D} \]
\[ \mathcal D'' = \qty{B \in \mathcal D : \forall A \in \mathcal D, B \cap A \in \mathcal D} \]
Note that $\mathcal A \subseteq \mathcal D''$ by $(\ast)$.
Running the same argument as before, we can show that $\mathcal D''$ is a $d$-system. So $\mathcal{D}'' = \mathbb{D}$.
But then (by the definition of $\mathcal{D}''$), $\forall \; B \in \mathcal{D}, A \in \mathcal{D} \implies B \cap A \in \mathcal{D}$, i.e. $\mathcal{D}$ is a $\pi$-system (check that $\emptyset \in \mathcal{D}$).
Expand All @@ -318,7 +318,7 @@ \subsection{Uniqueness of extension}

\begin{proof}
We define
\[ \mathcal D = \qty{A \in \mathcal E \mid \mu_1(A) = \mu_2(A)} \]
\[ \mathcal D = \qty{A \in \mathcal E : \mu_1(A) = \mu_2(A)} \]
This collection contains $\mathcal A$ by assumption.
By Dynkin's lemma, it suffices to prove $\mathcal D$ is a $d$-system, because then $\mathcal D \supseteq \sigma(\mathcal A) \supseteq \mathcal E$ giving $\mathcal D = \mathcal E$ as $\mathcal{D} \subseteq \mathcal{E}$.

Expand Down Expand Up @@ -438,20 +438,20 @@ \subsection{Lebesgue measure}

We shall prove this by contradiction.

Suppose this is not the case, so there exist $\varepsilon > 0$ and $B_n \in \mathcal A$ such that $B_n \downarrow \emptyset$ but $\mu(B_n) \geq 2\varepsilon$ for infinitely many $n$ (and so wlog for all $n$). \\
Suppose this is not the case, so there exist $\epsilon > 0$ and $B_n \in \mathcal A$ such that $B_n \downarrow \emptyset$ but $\mu(B_n) \geq 2\epsilon$ for infinitely many $n$ (and so wlog for all $n$). \\
We can approximate $B_n$ from within by a sequence $\overline C_n\footnote{$\overline C_n$ means the closure of $C_n$, i.e. make it a closed set by including the left endpoint} \in \mathcal{A}$ s.t. $C_n \subseteq B_n$ and $\mu(B_n \setminus C_n) \leq \epsilon / 2^n$.
Suppose $B_n = \bigcup_{i=1}^{N_n} (a_{ni},b_{ni}]$, then define $C_n = \bigcup_{i=1}^{N_n} (a_{ni}+\frac{2^{-n}\varepsilon}{N_n}, b_{ni}]$.
Note that the $C_n$ lie in $\mathcal A$, and $\mu(B_n \setminus C_n) \leq 2^{-n}\varepsilon$.
Suppose $B_n = \bigcup_{i=1}^{N_n} (a_{ni},b_{ni}]$, then define $C_n = \bigcup_{i=1}^{N_n} (a_{ni}+\frac{2^{-n}\epsilon}{N_n}, b_{ni}]$.
Note that the $C_n$ lie in $\mathcal A$, and $\mu(B_n \setminus C_n) \leq 2^{-n}\epsilon$.
Since $B_n$ is decreasing, we have $B_N = \bigcap_{n \leq N} B_n$, and
\begin{align*}
B_N \setminus (C_1 \cap \dots \cap C_N) = B_n \cap \qty(\bigcup_{n \leq N} C_n^c) = \bigcup_{n \leq N} B_N \setminus C_n \subseteq \bigcup_{n \leq N} B_n \setminus C_n
\end{align*}
Since $\mu$ is increasing and finitely additive and thus subadditive on $\mathcal{A}$,
\begin{align*}
\mu(B_N \setminus (C_1 \cap \dots \cap C_N)) \leq \mu\qty(\bigcup_{n \leq N} B_n \setminus C_n) \leq \sum_{n \leq N} \mu(B_n \setminus C_n) \leq \sum_{n \leq N} 2^{-N}\varepsilon \leq \varepsilon
\mu(B_N \setminus (C_1 \cap \dots \cap C_N)) \leq \mu\qty(\bigcup_{n \leq N} B_n \setminus C_n) \leq \sum_{n \leq N} \mu(B_n \setminus C_n) \leq \sum_{n \leq N} 2^{-N}\epsilon \leq \epsilon
\end{align*}

Since $\mu(B_N) \geq 2\varepsilon$, additivity implies that $\mu(C_1 \cap \dots \cap C_N) \geq \varepsilon$.
Since $\mu(B_N) \geq 2\epsilon$, additivity implies that $\mu(C_1 \cap \dots \cap C_N) \geq \epsilon$.
This means that $C_1 \cap \dots \cap C_N$ cannot be empty.
We can add the left endpoints of the intervals, giving $K_N = \overline C_1 \cap \dots \cap \overline C_N \neq \emptyset$.
By Analysis I, $K_N$ is a nested sequence of bounded nonempty closed intervals and therefore there is a point $x \in \mathbb R$ such that $x \in K_N$ for all $N$\footnote{As completeness of $\mathbb{R}$ implies $\bigcap_n K_n$ is closed and non empty.}.
Expand Down Expand Up @@ -488,7 +488,7 @@ \subsection{Lebesgue measure}
Not all null sets are countable; the Cantor set is an example.

The Lebesgue measure is \emph{translation-invariant}.
Let $x \in \mathbb R$, then the set $B + x = \qty{b + x \mid b \in B}$ lies in $\mathcal B$ iff $B \in \mathcal B$, and in this case, it satisfies $\lambda(B + x) = \lambda(B)$.
Let $x \in \mathbb R$, then the set $B + x = \qty{b + x : b \in B}$ lies in $\mathcal B$ iff $B \in \mathcal B$, and in this case, it satisfies $\lambda(B + x) = \lambda(B)$.
We can define the translated Lebesgue measure $\lambda_x(B) = \lambda(B + x)$ for all $B \in \mathcal B$, then $\lambda_x((a,b]) = \lambda((a, b] + x) = \lambda((a + x, b+x]) = b - a = \lambda((a, b])$.
So $\lambda_x = \lambda$ on the $\pi$-system of intervals and so $\lambda_x = \lambda$ on the sigma algebra $\mathcal{B}$ (i.e. $\forall \; B \in \mathcal{B}, \lambda(B+x) = \lambda(B)$).

Expand Down Expand Up @@ -623,7 +623,7 @@ \subsection{Borel--Cantelli lemmas}
Therefore, we can use this for arbitrary measures.

\begin{lemma}[Second Borel--Cantelli lemma]
Let $A_n \in \mathcal F$ be a sequence of independent events with= $\sum_n \prob{A_n} = \infty$.
Let $A_n \in \mathcal F$ be a sequence of independent events with $\sum_n \prob{A_n} = \infty$.
Then $\prob{A_n \text{ infinitely often}} = 1$.
\end{lemma}

Expand Down
Loading

0 comments on commit 528e34d

Please sign in to comment.