Skip to content

Commit

Permalink
Caught up more P&M lectures
Browse files Browse the repository at this point in the history
  • Loading branch information
Zentrik committed Nov 17, 2023
1 parent d012341 commit 40c0a79
Show file tree
Hide file tree
Showing 7 changed files with 882 additions and 19 deletions.
Binary file modified Graph_Theory.pdf
Binary file not shown.
45 changes: 28 additions & 17 deletions ProbAndMeasure/04_product_measures.tex
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ \subsection{Fubini's theorem}
\item Let $f \colon E \to \mathbb R$ be a $\mu$-integrable function (on the product measure).
Let
\[ A_1 = \qty{x_1 \in E_1 : \int_{E_2} \abs{f(x_1,x_2)} \dd{\mu_2(x_2)} < \infty}. \]
Define $f_1 : E_1 \to \mathbb{R}$ by $f_1(x_1) = \int_{E_2} f(x_1,x_2) \dd{\mu_2(x_2)}$ on $A_1$ and zero elsewhere. \\
Define $f_1 : E_1 \to \mathbb{R}$ by $f_1(x_1) = \int_{E_2} f(x_1,x_2) \dd{\mu_2(x_2)}$ on $A_1$ and 0 elsewhere. \\
Then $\mu_1(A_1^c) = 0$, $f_1$ is $\mu_1$-integrable and $\mu(f) = \mu_1(f_1) = \mu_1(f_1 1_{A_1})$, and defining $A_2$ symmetrically, $\mu(f) = \mu_2(f_2) = \mu_2(f_2 1_{A_2})$.
\end{enumerate}
\end{theorem}
Expand All @@ -129,52 +129,63 @@ \subsection{Fubini's theorem}
So $f_1$ is $\mu_1$-integrable.
We have $\mu_1(A_1^c) = 0$, otherwise $\mu_1(h) \geq \mu_1(h 1_{A_1^c}) = \infty$ \Lightning.

Note that $f_1^\pm = \int_{E_2} f^\pm(x_1,x_2) \dd{\mu_2(x_2)}$, and $\mu(f_1) = \mu_1(f_1^+) - \mu_1(f_1^-)$.
Hence, by the first part, $\mu(f) = \mu(f^+) - \mu(f^-) = \mu_1(f_1^+) - \mu_1(f_1^-) = \mu_1(f_1)$ as required.
Setting, $f_1^\pm = \int_{E_2} f^\pm(x_1,x_2) \dd{\mu_2(x_2)}$ we see than $f_1 = (f_1^+ - f_1^-) 1_{A_1}$.
Also by the first part, $\mu_1(f_1^+) = \mu(f^+) < \infty$ and $\mu_1(f_1^-) = \mu(f^-) < \infty$.
Hence, $\mu(f) =\footnote{As $f$ integrable} \mu(f^+) - \mu(f^-) = \mu_1(f_1^+) - \mu_1(f_1^-) =\footnote{As $f_1$ integrable due to $\mu_1(A_1^c) = 0$.} \mu_1(f_1)$ as required.
\end{proof}

\begin{remark}
The proofs above extend to $\sigma$-finite measures $\mu$.

Let $(E_i, \mathcal E_i, \mu_i)$ be measure spaces with $\sigma$-finite measures.
Note that $(\mathcal E_1 \otimes \mathcal E_2) \otimes \mathcal E_3 = \mathcal E_1 \otimes (\mathcal E_2 \otimes \mathcal E_3)$, by a $\pi$-system argument using Dynkin's lemma.
So we can iterate the construction of the product measure to obtain a measure $\mu_1 \otimes \dots \mu_n$, which is a unique measure on $\qty(\prod_{i=1}^n E_i \bigotimes_{i=1}^n \mathcal E_i)$ with the property that the measure of a hypercube $\mu(A_1 \times A_n)$ is the product of the measures of its sides $\mu_i(A_i)$.
So we can iterate the construction of the product measure to obtain a measure $\mu_1 \otimes \dots \otimes \mu_n$\footnote{This is associative.}, which is a unique measure on $\qty(\prod_{i=1}^n E_i, \bigotimes_{i=1}^n \mathcal E_i)$ with the property that the measure of a hypercube $\mu(A_1 \times A_n)$ is the product of the measures of its sides $\mu_i(A_i)$.

In particular, we have constructed the Lebesgue measure $\mu^n = \bigotimes_{i=1}^n \mu$ on $\mathbb R^n$.
Applying Fubini's theorem, for functions $f$ that are either nonnegative and measurable or $\mu^n$-integrable, we have
Applying Fubini's theorem, for functions $f$ that are either non-negative and measurable or $\mu^n$-integrable, we have
\[ \int_{\mathbb R^n} f \dd{\mu^n} = \idotsint_{\mathbb R \dots \mathbb R} f(x_1, \dots, x_n) \dd{\mu(x_1)} \dots \dd{\mu(x_n)} \]
\end{remark}

\subsection{Product probability spaces and independence}
\begin{proposition}
Let $(\Omega, \mathcal F, \mathbb P)$, and $(E, \mathcal E) = \qty(\prod_{i=1}^n E_i, \bigotimes_{i=1}^n \mathcal E_i)$.
Let $X \colon (\Omega, \mathcal F) \to (E, \mathcal E)$ be a measurable function, and define $X(\omega) = (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$.
Then the following are equivalent.
Let $X_1, \dots, X_n$ be r.v.s, $X_i : (\Omega, \mathcal F, \mathbb P) \to (E_i, \mathcal{E}_i)$.
Set $(E, \mathcal E) = \qty(\prod_{i=1}^n E_i, \bigotimes_{i=1}^n \mathcal E_i)$.
Consider $X \colon (\Omega, \mathcal F, \mathbb{P}) \to (E, \mathcal E)$ given by $X(\omega) = (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$.
Then $X$ is $\mathcal{E}$-measurable and the following are equivalent.
\begin{enumerate}
\item $X_1, \dots, X_n$ are independent random variables;
\item $\mu_X = \bigotimes_{i=1}^n \mu_{X_i}$;
\item for all bounded and measurable $f_i \colon E_i \to \mathbb R$, $\expect{\prod_{i=1}^n f_i(X_i)} = \prod_{i=1}^n \expect{f_i(X_i)}$.
\end{enumerate}
\end{proposition}
\begin{proof}
\emph{(i) implies (ii).}
Consider the $\pi$-system $\mathcal A$ of rectangles $A = \prod_{i=1}^n A_i$ for $A_i \in \mathcal E_i$.
Since $\mu_X$ is an image measure,
Then
\[ \mu_X(A_1 \times \dots \times A_n) = \prob{X_1 \in A_1, \dots, X_n \in A_n} = \prob{X_1} \dots \prob{A_n} = \prod_{i=1}^n \mu_{X_i}(A_i) \]
So by uniqueness, the result follows.
To show $X$ measurable suffices to check $X\inv(A_1 \times \dots \times A_n) \in \mathcal{F}$, where $A_i \in \mathcal{E}_i \ \forall \; i$ as this is a $\pi$-system generating $\mathcal{E}$.
\begin{align*}
X\inv(A_1 \times \dots \times A_n) &= \qty{\omega : X_1(\omega) \in A_1, \dots, X_n(\omega) \in A_n} \\
&= \bigcap_{i = 1}^n X_i\inv(A_i).
\end{align*}
$X_i$ measurable so $X_i\inv(A_i) \in \mathcal{F}$ and so the intersection is in $\mathcal{F}$.

(1) $\implies$ (2):
Consider the $\pi$-system $\mathcal A$ of rectangles $A = \prod_{i=1}^n A_i$ for $A_i \in \mathcal E_i$, as this generates $\mathcal{E}$ suffices to check equality on it.

Since $\mu_X$ is an image measure, then
\begin{align*}
\mu_X(A_1 \times \dots \times A_n) = \prob{X_1 \in A_1, \dots, X_n \in A_n} = \prob{X_1} \dots \prob{A_n} &= \prod_{i=1}^n \mu_{X_i}(A_i) \\
&= \qty(\bigotimes_{i=1}^n \mu_{X_i})(A).
\end{align*}

\emph{(ii) implies (iii).}
(2) $\implies$ (3):
By Fubini's theorem,
\begin{align*}
\expect{\prod_{i=1}^n f_i(X_i)} &= \mu_X\qty(\prod_{i=1}^n f_i(x_i)) \\
&= \int_E f(x) \dd{\mu(x)} \\
&= \int_E f(x) \dd{\mu_X(x)} \\
&= \idotsint_{E_i} \qty(\prod_{i=1}^n f_i(x_i)) \dd{\mu_{X_1}(x_1)} \dots \dd{\mu_{X_2}(x_2)} \\
&= \prod_{i=1}^n \int_{E_i} f_i(x_i) \dd{\mu_{X_i}(x_i)} \\
&= \prod_{i=1}^n \expect{f_i(X_i)}
\end{align*}

\emph{(iii) implies (i).}
(3) $\implies$ (1):
Let $f_i = 1_{A_i}$ for any $A_i \in \mathcal E_i$.
These are bounded and measurable functions.
Then
Expand Down
Loading

0 comments on commit 40c0a79

Please sign in to comment.