Skip to content

WLHao0313/ASRec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ASRec: Adaptive Sequential Recommendation with Dynamic and Periodic Preferences Capturing

Official PyTorch Code base for "ASRec: Adaptive Sequential Recommendation with Dynamic and Periodic Preferences Capturing". The code is built on the RecBole library, implemented by @WLHao0313.

  • The model implementation is at recbole/model/sequential_recommender/asrec.py

Abstract

Using the code:

The code is stable while using Python 3.7.12, PyTorch >= 1.13.1.

  • Clone this repository:
git clone https://github.com/WLHao0313/ASRec
cd ASRec
  • To install all the dependencies using conda:
conda create -n asrec python=3.7.12 -y
conda activate asrec
pip install -r requirements.txt

Datasets

  1. ml-100k - Link
  2. ml-1M - Link
  3. amazon-beauty - Link
  4. amazon-sports-outdoors - Link
  5. yelp - Link

Following is the statistics of the datasets we use:

Training time

On ml-1m dataset:

python run_ASRec.py --dataset=ml-1m

For other datasets, simply replace "ml-1m" with the dataset name (e.g. ml-100k, amazon-beauty, amazon-sports-outdoors, yelp).

Case Studies

The model ASRec successfully captures users' periodic and dynamic preference displays:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages