Skip to content

Commit

Permalink
User Guide on Custom Grids & .from_xarray() methods (#1086)
Browse files Browse the repository at this point in the history
* docs/user-guide/custom-grid.ipynb

* add notebook

* update notebook

* update api ref

* docstrings

* update docstrings

* gcam

* o Minor notebook fixes

---------

Co-authored-by: Aaron Zedwick <[email protected]>
Co-authored-by: Rajeev Jain <[email protected]>
  • Loading branch information
3 people authored Jan 17, 2025
1 parent 62ca314 commit 17e84a4
Show file tree
Hide file tree
Showing 5 changed files with 425 additions and 1 deletion.
2 changes: 2 additions & 0 deletions docs/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,7 @@ I/O & Conversion
UxDataArray.to_geodataframe
UxDataArray.to_polycollection
UxDataArray.to_dataset
UxDataArray.from_xarray

UxDataset
-----------
Expand Down Expand Up @@ -222,6 +223,7 @@ I/O & Conversion
:toctree: generated/

UxDataset.from_structured
UxDataset.from_xarray

Plotting
--------
Expand Down
355 changes: 355 additions & 0 deletions docs/user-guide/custom-grid.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,355 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a8e2583ad32cdf8",
"metadata": {},
"source": [
"# Custom Grid Topology\n",
"\n",
"This notebook will showcase how to construct UXarray data structures from custom grid topology information, including how to convert existing Xarray data structures to UXarray."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57e64b0ff76581ca",
"metadata": {},
"outputs": [],
"source": [
"import uxarray as ux\n",
"import xarray as xr\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"id": "4cd183a0-3658-4c68-9e08-ed4ff063a0ea",
"metadata": {},
"source": [
"## Minimal Grid Definition\n",
"\n",
"The UGRID conventions require a minimal set of variables for representing a 2D unstructured grid. \n",
"\n",
"| **Variable** | **Shape** | **Description** |\n",
"|--------------------------|--------------------------------|------------------------------------------------|\n",
"| `node_lon` | `(n_node, )` | Longitude of the nodes that make up each face. |\n",
"| `node_lat` | `(n_node, )` | Latitude of the nodes that make up each face. |\n",
"| `face_node_connectivity` | `(n_face, n_max_face_nodes])` | Indices of the nodes that surround each face. |\n"
]
},
{
"cell_type": "markdown",
"id": "072075f6-6b91-4e91-9c28-67bb9ee073ef",
"metadata": {},
"source": [
"## Fixed Face Sizes\n",
"\n",
"For grids where each face has the same number of nodes, such as strictly triangular grids, each row in the `face_node_connectivity` array will contain the indices of nodes that surround each face, with no fill values. Below is an example of the node coordinates and connectivity required for representing a single triangle in the UGRID conventions."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f608c0e2-9334-4e1e-aed4-d44b923a5566",
"metadata": {},
"outputs": [],
"source": [
"node_lon = np.array([-20.0, 0.0, 20.0])\n",
"node_lat = np.array([-10.0, 10.0, -10.0])\n",
"face_node_connectivity = np.array(\n",
" [\n",
" [0, 1, 2],\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f8e3b665-c225-44d6-81b1-80ad23a1b38d",
"metadata": {},
"source": [
"These variables can be passed directly into the `Grid.from_topology()` class-method, which allows custom grid topology information. This is especially useful for cases where a specific grid format isn't directly supported. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1b3fe63-28f1-4082-910f-8fa3179f1cf8",
"metadata": {},
"outputs": [],
"source": [
"uxgrid_tri = ux.Grid.from_topology(\n",
" node_lon=node_lon, node_lat=node_lat, face_node_connectivity=face_node_connectivity\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9846c0f-309b-4b8a-b355-98d23bfd5ce9",
"metadata": {},
"outputs": [],
"source": [
"uxgrid_tri.plot(title=\"Triangle\")"
]
},
{
"cell_type": "markdown",
"id": "f96283a6-a6b8-40ae-99e5-860686fc580d",
"metadata": {},
"source": [
"## Mixed Face Sizes\n",
"\n",
"For grids where each face does not have the same number of nodes, the `face_node_connectivity` array will have it's final dimension (`n_max_face_nodes`) set to the largest element shape. For example, a grid with triangles and quadrialterals will have a final dimension of 4. Any element that has less than the maximum number of nodes will be padded with a fill value. The `face_node_connectivity` array below showcases a basic grid with a single triangle and quadrilateral. Observe that the first row is set to `[0, 1, 2, -1]`, with the first three integers being the indices of the triangle corners, and the final value used as a fill value."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43e13ad3-e020-464f-a14b-bbac8bed6bb5",
"metadata": {},
"outputs": [],
"source": [
"node_lon = np.array([-20.0, 0.0, 20.0, -20, -40])\n",
"node_lat = np.array([-10.0, 10.0, -10.0, 10, -10])\n",
"face_node_connectivity = np.array([[0, 1, 2, -1], [0, 1, 3, 4]])"
]
},
{
"cell_type": "markdown",
"id": "c28d3bb0-b469-41e4-a250-5b8f5f2125a9",
"metadata": {},
"source": [
"The `fill_value` parameter must be passed in when working with a mixed topology grid. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4669559c-5f79-47ed-a53f-6bf85b1eaea4",
"metadata": {},
"outputs": [],
"source": [
"uxgrid_tri_quad = ux.Grid.from_topology(\n",
" node_lon=node_lon,\n",
" node_lat=node_lat,\n",
" face_node_connectivity=face_node_connectivity,\n",
" fill_value=-1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e54be66c-d602-41c1-a966-efc4bb7a29c8",
"metadata": {},
"outputs": [],
"source": [
"uxgrid_tri_quad.plot(title=\"Triangle & Quad\")"
]
},
{
"cell_type": "markdown",
"id": "36d09bd1-87cc-4b78-8d2d-8108ef61f7a2",
"metadata": {},
"source": [
"## Working with Existing Xarray Structures\n",
"\n",
"The previous examples showcase how to create a `Grid` from custom topology. The follow sections will walk through how to match data to the `Grid`."
]
},
{
"cell_type": "markdown",
"id": "0876cfed-16a2-4532-ab7e-60754c897a5f",
"metadata": {},
"source": [
"### `xr.DataArray` to `ux.UxDataArray`\n",
"\n",
"Consider the previous example where we constructed the `uxgrid_tri` grid, consisting of a single triangle. Below is an example `xr.DataArray` containing four temperature values. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d7dce48-e6f4-4bba-8b25-961139fb07b5",
"metadata": {},
"outputs": [],
"source": [
"xrda_temp = xr.DataArray(\n",
" name=\"temp\",\n",
" data=np.array(\n",
" [\n",
" [100, 105, 108, 109],\n",
" ]\n",
" ).T,\n",
" dims=[\"time\", \"cell\"],\n",
")\n",
"xrda_temp"
]
},
{
"cell_type": "markdown",
"id": "41f67fbad5c3e485",
"metadata": {},
"source": [
"The original dimension must be mapped to their UGRID equivalent. \n",
"\n",
"| **Data Mapping** | **UGRID Dimension Name** |\n",
"|------------------|--------------------------|\n",
"| Faces | n_face |\n",
"| Edges | n_edge |\n",
"| Nodes | n_node |\n",
"\n",
"\n",
"In the example above, the `cell` dimension corresponds to the faces of the grid, meaning we want to translate the dimension to `n_face`\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db7ea793-4f8e-4ae9-beec-1bfb0080d79f",
"metadata": {},
"outputs": [],
"source": [
"ugrid_dims = {\"cell\": \"n_face\"}"
]
},
{
"cell_type": "markdown",
"id": "da24da79813502a5",
"metadata": {},
"source": [
"The `UxDataArray.from_xarray()` takes in a user-defined `Grid` in addition to the original `xr.DataArray` and UGRID dimension mapping and returns a `UxDataArray`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "797993ac-0e83-437b-a950-704f31f4eae4",
"metadata": {},
"outputs": [],
"source": [
"uxda_temp = ux.UxDataArray.from_xarray(xrda_temp, uxgrid_tri, ugrid_dims)\n",
"uxda_temp"
]
},
{
"cell_type": "markdown",
"id": "67131fdf-3431-47ea-8e9c-0409300d7667",
"metadata": {},
"source": [
"### `xr.Dataset` to `ux.UxDataset`\n",
"\n",
"More commonly, you may have an entire `xr.Dataset` that contains data variables. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e967c9466b3cb25d",
"metadata": {},
"outputs": [],
"source": [
"xrda_vorticity = xr.DataArray(\n",
" name=\"vorticity\",\n",
" data=np.array(\n",
" [\n",
" [1, 2, 3, 4],\n",
" [5, 6, 7, 8],\n",
" [9, 10, 11, 12],\n",
" ]\n",
" ).T,\n",
" dims=[\"time\", \"vertex\"],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "86c9a24a4320d7d0",
"metadata": {},
"source": [
"In this example, we have a cell-centered `temp` and vertex-centered `vorticity` variable. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "906532aa-acb3-43c4-95f9-ef9d29312865",
"metadata": {},
"outputs": [],
"source": [
"ds = xr.Dataset(data_vars={\"temp\": xrda_temp, \"vorticity\": xrda_vorticity})\n",
"ds"
]
},
{
"cell_type": "markdown",
"id": "bb01a75189469712",
"metadata": {},
"source": [
"We must now include an additional entry into our `ugrid_dims` dictionary for our vertex-centered data variable."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a266b291-c189-40a3-955b-d64dc937d5c9",
"metadata": {},
"outputs": [],
"source": [
"ugrid_dims = {\"cell\": \"n_face\", \"vertex\": \"n_node\"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8a9b3bf5-38bb-4e9a-8890-4d540b9f62b7",
"metadata": {},
"outputs": [],
"source": [
"uxds = ux.UxDataset.from_xarray(ds=ds, uxgrid=uxgrid_tri, ugrid_dims=ugrid_dims)"
]
},
{
"cell_type": "markdown",
"id": "7d0b1326",
"metadata": {},
"source": [
"uxds now has two `UxDataArray` objects, one for the cell-centered data `temp` and one for the vertex-centered data `vorticity`. There are 4 time steps 0, 1, 2, and 3. Values for time step 0 are shown below."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "992a409a",
"metadata": {},
"outputs": [],
"source": [
"uxds[\"vorticity\"][0]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "uxarray_env3.12",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
3 changes: 3 additions & 0 deletions docs/userguide.rst
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,9 @@ These user guides provide detailed explanations of the core functionality in UXa
`Data Structures <user-guide/data-structures.ipynb>`_
Core data structures for working with unstructured grid and data files

`Custom Grid Topology <user-guide/custom-grid.ipynb>`_
Create a Grid from custom Grid topology and convert existing Xarray data structures to UXarray.

`Loading Data using Dask <user-guide/parallel-load-ux-with-dask.ipynb>`_
Read data with chunking and/or in parallel

Expand Down
Loading

0 comments on commit 17e84a4

Please sign in to comment.