Skip to content

Source code for paper "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval" on TPAMI-2013

Notifications You must be signed in to change notification settings

TreezzZ/ITQ_PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A pytorch implementation for paper "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-scale Image Retrieval" TPAMI-2013

REQUIREMENTS

pip install -r requirements.txt

  1. pytorch >= 1.0
  2. loguru

DATASETS

  1. cifar10-gist.mat password: umb6
  2. cifar-10_alexnet.t password: f1b7
  3. nus-wide-tc21_alexnet.t password: vfeu
  4. imagenet-tc100_alexnet.t password: 6w5i

USAGE

usage: run.py [-h] [--dataset DATASET] [--root ROOT]
              [--code-length CODE_LENGTH] [--max-iter MAX_ITER] [--topk TOPK]
              [--gpu GPU]

ITQ_PyTorch

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     Dataset name.
  --root ROOT           Path of dataset
  --code-length CODE_LENGTH
                        Binary hash code length.(default:
                        8,16,24,32,48,64,96,128)
  --max-iter MAX_ITER   Number of iterations.(default: 3)
  --topk TOPK           Calculate map of top k.(default: ALL)
  --gpu GPU             Using gpu.(default: False)

EXPERIMENTS

cifar10-gist dataset. Gist features, 1000 query images, 5000 training images, MAP@ALL.

cifar-10-alexnet dataset. Alexnet features, 1000 query images, 5000 training images, MAP@ALL.

nus-wide-tc21-alexnet dataset. Alexnet features, top 21 classes, 2100 query images, 10500 training images, MAP@5000.

imagenet-tc100-alexnet dataset. Alexnet features, top 100 classes, 5000 query images, 10000 training images, MAP@1000.

Bits 8 16 24 32 48 64 96 128
cifar10-gist@ALL 0.1484 0.1584 0.1613 0.1632 0.1672 0.1688 0.1726 0.1749
cifar10-alexnet@ALL 0.2000 0.2175 0.2215 0.2308 0.2386 0.2490 0.2551 0.2623
nus-wide-tc21-alexnet@5000 0.6423 0.6878 0.7016 0.7186 0.7280 0.7389 0.7500 0.7539
imagenet-tc100-alexnet@1000 0.1617 0.2369 0.2732 0.3296 0.3751 0.4076 0.4418 0.4554

About

Source code for paper "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval" on TPAMI-2013

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages