A pytorch implementation for paper "Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-scale Image Retrieval" TPAMI-2013
pip install -r requirements.txt
- pytorch >= 1.0
- loguru
- cifar10-gist.mat password: umb6
- cifar-10_alexnet.t password: f1b7
- nus-wide-tc21_alexnet.t password: vfeu
- imagenet-tc100_alexnet.t password: 6w5i
usage: run.py [-h] [--dataset DATASET] [--root ROOT]
[--code-length CODE_LENGTH] [--max-iter MAX_ITER] [--topk TOPK]
[--gpu GPU]
ITQ_PyTorch
optional arguments:
-h, --help show this help message and exit
--dataset DATASET Dataset name.
--root ROOT Path of dataset
--code-length CODE_LENGTH
Binary hash code length.(default:
8,16,24,32,48,64,96,128)
--max-iter MAX_ITER Number of iterations.(default: 3)
--topk TOPK Calculate map of top k.(default: ALL)
--gpu GPU Using gpu.(default: False)
cifar10-gist dataset. Gist features, 1000 query images, 5000 training images, MAP@ALL.
cifar-10-alexnet dataset. Alexnet features, 1000 query images, 5000 training images, MAP@ALL.
nus-wide-tc21-alexnet dataset. Alexnet features, top 21 classes, 2100 query images, 10500 training images, MAP@5000.
imagenet-tc100-alexnet dataset. Alexnet features, top 100 classes, 5000 query images, 10000 training images, MAP@1000.
Bits | 8 | 16 | 24 | 32 | 48 | 64 | 96 | 128 |
---|---|---|---|---|---|---|---|---|
cifar10-gist@ALL | 0.1484 | 0.1584 | 0.1613 | 0.1632 | 0.1672 | 0.1688 | 0.1726 | 0.1749 |
cifar10-alexnet@ALL | 0.2000 | 0.2175 | 0.2215 | 0.2308 | 0.2386 | 0.2490 | 0.2551 | 0.2623 |
nus-wide-tc21-alexnet@5000 | 0.6423 | 0.6878 | 0.7016 | 0.7186 | 0.7280 | 0.7389 | 0.7500 | 0.7539 |
imagenet-tc100-alexnet@1000 | 0.1617 | 0.2369 | 0.2732 | 0.3296 | 0.3751 | 0.4076 | 0.4418 | 0.4554 |