IMCPT-SparseGM dataset is a new visual graph matching benchmark addressing partial matching and graphs with larger sizes, based on the novel stereo benchmark Image Matching Challenge PhotoTourism (IMC-PT) 2020. This dataset is released in CVPR 2023 paper Deep Learning of Partial Graph Matching via Differentiable Top-K.
A comparison of existing vision graph matching datasets is presented:
dataset name | # images | # classes | avg # nodes | avg # edges | # universe | partial rate | best-known f1 |
---|---|---|---|---|---|---|---|
CMU house/hotel | 212 | 2 | 30 | \ | 30 | 0.0% | 100% (learning-free, RRWM, ECCV 2012) |
Willow ObjectClass | 404 | 5 | 10 | \ | 10 | 0.0% | 97.8% (unsupervised learning, GANN, PAMI 2023) |
CUB2011 | 11788 | 200 | 12.0 | \ | 15 | 20.0% | 83.2% (supervised learning, PCA-GM, ICCV 2019) |
Pascal VOC Keypoint | 8702 | 20 | 9.07 | \ | 6 to 23 | 28.5% | 62.8% (supervised learning, BBGM, ECCV 2020) |
IMC-PT-SparseGM-50 | 25765 | 16 | 21.36 | 54.71 | 50 | 57.3% | 72.9% (supervised learning, GCAN-AFAT-I, CVPR 2023) |
IMC-PT-SparseGM-100 | 25765 | 16 | 44.48 | 123.99 | 100 | 55.5% | 71.5%(supervised learning, GCAN-AFAT-U, CVPR 2023) |
The classes and number of images in each class are also presented:
class name | brandenburg_gate | grand_place_brussels | palace_of_westminster | reichstag* | taj_mahal | westminster_abbey | buckingham_palace | hagia_sophia_interior | pantheon_exterior | sacre_coeur* | temple_nara_japan | colosseum_exterior | notre_dame_front_facade | prague_old_town_square | st_peters_square* | trevi_fountain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# images | 1363 | 1083 | 983 | 75 | 1312 | 1061 | 1676 | 889 | 1401 | 1179 | 904 | 2063 | 3765 | 2316 | 2504 | 3191 |
* refers to test class.
A visualization of 3D point cloud labels provided by the original IMC-PT (blue) and our selected anchor points for graph matching in IMC-PT-SparseGM (red):
A visualization of graph matching labels from IMC-PT-SparseGM:
A visualization of visual graphs in each class from IMC-PT-SparseGM:
This generator creates IMCPT-SparseGM based on Image_Matching_Challange_Data.
Note that you should install colmap and download Image_Matching_Challange_Data before you create IMCPT-SparseGM by just running python dataset_generator.py
Arguments are the following:
--root 'source dataset directory' default='Image_Matching_Challange_Data'
--out_dir 'output dataset directory' default='picture'
--pt_num 'universal point number to be selected' default=50
--min_exist_num 'min num of img an anchor exists in' default=10
--dis_rate 'min distance rate when selecting points' default=1.0
--exist_dis_rate 'min distance rate when judging anchors\' existence' default=0.75
Then the adjacency matrix can be generated and saved in annotation files by running
python build_graphs.py
Arguments are the following:
--anno_path 'dataset annotation directory' default='data/IMC-PT-SparseGM/annotations'
--stg 'strategy of graph building, tri or near or fc' default='tri'
We provide the download links of IMC-PT-SparseGM-50 and IMC-PT-SparseGM-100, i.e., IMC-PT-SparseGM with annotations of 50 and 100 anchor points from google drive or baidu drive (code: g2cj) or hugging face.
You can also generate IMC-PT-SparseGM annotations by your demands (such as setting pt_num
to 200), using IMC-PT-SparseGM generator.
Please cite the following papers if you use IMC-PT-SparseGM dataset:
@article{JinIJCV21,
title={Image Matching across Wide Baselines: From Paper to Practice},
author={Jin, Yuhe and Mishkin, Dmytro and Mishchuk, Anastasiia and Matas, Jiri and Fua, Pascal and Yi, Kwang Moo and Trulls, Eduard},
journal={International Journal of Computer Vision},
pages={517--547},
year={2021}
}
@unpublished{WangCVPR23,
title={Deep Learning of Partial Graph Matching via Differentiable Top-K},
author={Runzhong Wang*, Ziao Guo*, Shaofei Jiang, Xiaokang Yang, Junchi Yan},
booktitle={CVPR},
year={2023}
}