Skip to content

Commit

Permalink
update gh-pages
Browse files Browse the repository at this point in the history
Signed-off-by: Suraj Aralihalli <[email protected]>
  • Loading branch information
SurajAralihalli committed Feb 6, 2024
1 parent a4290fd commit 46e0f1b
Show file tree
Hide file tree
Showing 2 changed files with 99 additions and 10 deletions.
91 changes: 90 additions & 1 deletion docs/archive.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,96 @@ nav_order: 15
---
Below are archived releases for RAPIDS Accelerator for Apache Spark.

## Release v23.12.1
### Hardware Requirements:

The plugin is tested on the following architectures:

GPU Models: NVIDIA V100, T4, A10/A100, L4 and H100 GPUs

### Software Requirements:

OS: Ubuntu 20.04, Ubuntu 22.04, CentOS 7, or Rocky Linux 8

NVIDIA Driver*: R470+

Runtime:
Scala 2.12, 2.13
Python, Java Virtual Machine (JVM) compatible with your spark-version.

* Check the Spark documentation for Python and Java version compatibility with your specific
Spark version. For instance, visit `https://spark.apache.org/docs/3.4.1` for Spark 3.4.1.

Supported Spark versions:
Apache Spark 3.2.0, 3.2.1, 3.2.2, 3.2.3, 3.2.4
Apache Spark 3.3.0, 3.3.1, 3.3.2, 3.3.3
Apache Spark 3.4.0, 3.4.1
Apache Spark 3.5.0

Supported Databricks runtime versions for Azure and AWS:
Databricks 10.4 ML LTS (GPU, Scala 2.12, Spark 3.2.1)
Databricks 11.3 ML LTS (GPU, Scala 2.12, Spark 3.3.0)
Databricks 12.2 ML LTS (GPU, Scala 2.12, Spark 3.3.2)

Supported Dataproc versions:
GCP Dataproc 2.0
GCP Dataproc 2.1

Supported Dataproc Serverless versions:
Spark runtime 1.1 LTS

*Some hardware may have a minimum driver version greater than R470. Check the GPU spec sheet
for your hardware's minimum driver version.

*For Cloudera and EMR support, please refer to the
[Distributions](https://docs.nvidia.com/spark-rapids/user-guide/latest/faq.html#which-distributions-are-supported) section of the FAQ.

### RAPIDS Accelerator's Support Policy for Apache Spark
The RAPIDS Accelerator maintains support for Apache Spark versions available for download from [Apache Spark](https://spark.apache.org/downloads.html)

### Download RAPIDS Accelerator for Apache Spark v23.12.1
- **Scala 2.12:**
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.12 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.1/rapids-4-spark_2.12-23.12.1.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.12 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.1/rapids-4-spark_2.12-23.12.1.jar.asc)

- **Scala 2.13:**
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.13 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.1/rapids-4-spark_2.13-23.12.1.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.13 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.1/rapids-4-spark_2.13-23.12.1.jar.asc)

This package is built against CUDA 11.8. It is tested on V100, T4, A10, A100, L4 and H100 GPUs with
CUDA 11.8 through CUDA 12.0.

### Verify signature
* Download the [PUB_KEY](https://keys.openpgp.org/[email protected]).
* Import the public key: `gpg --import PUB_KEY`
* Verify the signature for Scala 2.12 jar:
`gpg --verify rapids-4-spark_2.12-23.12.1.jar.asc rapids-4-spark_2.12-23.12.1.jar`
* Verify the signature for Scala 2.13 jar:
`gpg --verify rapids-4-spark_2.13-23.12.1.jar.asc rapids-4-spark_2.13-23.12.1.jar`

The output of signature verify:

gpg: Good signature from "NVIDIA Spark (For the signature of spark-rapids release jars) <[email protected]>"

### Release Notes
New functionality and performance improvements for this release include:
* Introduced support for chunked reading of ORC files.
* Enhanced support for additional time zones and added stack function support.
* Enhanced performance for join and aggregation operations.
* Kernel optimizations have been implemented to improve Parquet read performance.
* RAPIDS Accelerator also built and tested with Scala 2.13.
* Last version to support Pascal-based Nvidia GPUs; discontinued in the next release.
* Introduced support for parquet Legacy rebase mode (spark.sql.parquet.datetimeRebaseModeInRead=LEGACY and spark.sql.parquet.int96RebaseModeInRead=LEGACY)
* Introduced support for Percentile function.
* Delta lake 2.3 support.
* Qualification and Profiling tool:
* Profiling Tool now processes Spark Driver log for GPU runs, enhancing feature analysis.
* Auto-tuner recommendations include AQE settings for optimized performance.
* New configurations in Profiler for enabling off-default features: udfCompiler, incompatibleDateFormats, hasExtendedYearValues.

For a detailed list of changes, please refer to the
[CHANGELOG](https://github.com/NVIDIA/spark-rapids/blob/main/CHANGELOG.md).

## Release v23.12.0
### Hardware Requirements:

Expand Down Expand Up @@ -1481,4 +1571,3 @@ Software Requirements:
Python 3.x, Scala 2.12, Java 8



18 changes: 9 additions & 9 deletions docs/download.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ cuDF jar, that is either preinstalled in the Spark classpath on all nodes or sub
that uses the RAPIDS Accelerator For Apache Spark. See the [getting-started
guide](https://docs.nvidia.com/spark-rapids/user-guide/latest/getting-started/overview.html) for more details.

## Release v23.12.1
## Release v23.12.2
### Hardware Requirements:

The plugin is tested on the following architectures:
Expand Down Expand Up @@ -65,14 +65,14 @@ for your hardware's minimum driver version.
### RAPIDS Accelerator's Support Policy for Apache Spark
The RAPIDS Accelerator maintains support for Apache Spark versions available for download from [Apache Spark](https://spark.apache.org/downloads.html)

### Download RAPIDS Accelerator for Apache Spark v23.12.1
### Download RAPIDS Accelerator for Apache Spark v23.12.2
- **Scala 2.12:**
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.12 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.1/rapids-4-spark_2.12-23.12.1.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.12 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.1/rapids-4-spark_2.12-23.12.1.jar.asc)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.12 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.2/rapids-4-spark_2.12-23.12.2.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.12 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.2/rapids-4-spark_2.12-23.12.2.jar.asc)

- **Scala 2.13:**
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.13 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.1/rapids-4-spark_2.13-23.12.1.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.1 - Scala 2.13 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.1/rapids-4-spark_2.13-23.12.1.jar.asc)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.13 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.2/rapids-4-spark_2.13-23.12.2.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.13 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.2/rapids-4-spark_2.13-23.12.2.jar.asc)

This package is built against CUDA 11.8. It is tested on V100, T4, A10, A100, L4 and H100 GPUs with
CUDA 11.8 through CUDA 12.0.
Expand All @@ -81,9 +81,9 @@ CUDA 11.8 through CUDA 12.0.
* Download the [PUB_KEY](https://keys.openpgp.org/[email protected]).
* Import the public key: `gpg --import PUB_KEY`
* Verify the signature for Scala 2.12 jar:
`gpg --verify rapids-4-spark_2.12-23.12.1.jar.asc rapids-4-spark_2.12-23.12.1.jar`
`gpg --verify rapids-4-spark_2.12-23.12.2.jar.asc rapids-4-spark_2.12-23.12.2.jar`
* Verify the signature for Scala 2.13 jar:
`gpg --verify rapids-4-spark_2.13-23.12.1.jar.asc rapids-4-spark_2.13-23.12.1.jar`
`gpg --verify rapids-4-spark_2.13-23.12.2.jar.asc rapids-4-spark_2.13-23.12.2.jar`

The output of signature verify:

Expand All @@ -110,4 +110,4 @@ For a detailed list of changes, please refer to the

## Archived releases

As new releases come out, previous ones will still be available in [archived releases](./archive.md).
As new releases come out, previous ones will still be available in [archived releases](./archive.md).

0 comments on commit 46e0f1b

Please sign in to comment.