This is a fork of the original TCPDBench with the goal to make it easier to configure and deploy. This fork only supports one-dimensional datasets!
- Create a
Dockerfile
like the following example:
FROM simoneismann/tcpdbench:latest
# copy the datasets into the benchmark dir, overwrite annotations.json
ADD datasets /TCPDBench/datasets
COPY annotations.json /TCPDBench/analysis/annotations/
# copy the configuration file
COPY abed_conf.py /TCPDBench/abed_conf.py
# Set the working directory
WORKDIR TCPDBench
# Update the datasets in the config files to the added ones
RUN chmod +x utils/setup_datasets.sh && ./utils/setup_datasets.sh
- Inside the Dockerfile's directory:
- Run the commands below in the Dockerfile directory to execute the experiments:
# build a container from your created Dockerfile
docker build -t tcpdexperiment .
# make results persist to host
docker volume create tcpdbench_vol
# reproduce all experiments (-np sets number of threads)
docker run -i -t -v tcpdbench_vol:/TCPDBench/docker_results tcpdexperiment /bin/bash -c "abed reload_tasks && abed status && mpiexec --allow-run-as-root -np 4 abed local && make results && cp -r /TCPDBench/abed_results /TCPDBench/docker_results && cp -r /TCPDBench/analysis/output /TCPDBench/docker_results"
# lookup the mountpoint of the volume --> there the results are stored
docker volume inspect tcpdbench_vol
The code in this repository is licensed under the MIT license, unless otherwise specified. See the LICENSE file for further details. Reuse of the code in this repository is allowed, but should cite our paper.
@article{vandenburg2020evaluation,
title={An Evaluation of Change Point Detection Algorithms},
author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
journal={arXiv preprint arXiv:2003.06222},
year={2020}
}