This is a Pytorch implementation of EV-GCN described in Edge-variational Graph Convolutional Networks for Uncertainty-aware Disease Prediction (MICCAI 2020) by Yongxiang Huang and Albert C.S. Chung.
Python 3.7.4+
Pytorch 1.4.0
torch-geometric
scikit-learn
NumPy 1.16.2
Ensure Pytorch 1.4.0 is installed before installing torch-geometric.
This code has been tested using Pytorch
on a GTX1080TI GPU.
python train_eval_evgcn.py --train=1
To get a detailed description for available arguments, please run
python train_eval_evgcn.py --help
To download the used dataset, please run the following script in the data
folder:
python fetch_data.py
If you want to train a new model on your own dataset, please change the data loader functions defined in dataloader.py
accordingly, then run python train_eval_evgcn.py --train=1
python train_eval_evgcn.py --train=0
If you find this code useful in your work, please cite:
@inproceedings{huang2020edge,
title={Edge-Variational Graph Convolutional Networks for Uncertainty-Aware Disease Prediction},
author={Huang, Yongxiang and Chung, Albert CS},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={562--572},
year={2020},
organization={Springer}
}