Skip to content

Releases: RapidAI/RapidTable

Release v1.0.3

09 Jan 02:16
Compare
Choose a tag to compare

⚠️注意:本次更新版本为v1.x,不兼容v0.x版本,请谨慎更新,避免导致接口调用有误。

主要更新

  1. RapidTable的输入输出做了更新,采用dataclasses来封装,简化参数传递,便于后续使用,更新和维护。示例如下:
    # 输入
    @dataclass
    class RapidTableInput:
       model_type: Optional[str] = ModelType.SLANETPLUS.value
       model_path: Union[str, Path, None, Dict[str, str]] = None
       use_cuda: bool = False
       device: str = "cpu"
    
    # 输出
    @dataclass
    class RapidTableOutput:
       pred_html: Optional[str] = None
       cell_bboxes: Optional[np.ndarray] = None
       logic_points: Optional[np.ndarray] = None
       elapse: Optional[float] = None
    
    # 使用示例
    input_args = RapidTableInput(model_type="unitable")
    table_engine = RapidTable(input_args)
    
    img_path = 'test_images/table.jpg'
    table_results = table_engine(img_path)
    
    print(table_results.pred_html)
  2. 集成了Unitable项目最新表格识别算法,推理引擎为torch,提升了RapidTable的上限。
  3. 优化了模型下载和托管问题,模型托管在modelscope上。在使用时,只需要指定对应的model_type,即可自动下载对应模型。当然,也可以通过model_path来具体指定模型路径。

What's Changed in v1.0.3

  • fix: fix cli error
  • Merge pull request #43 from Joker1212/fix_ci
  • ci: fix setup

Full Changelog: https://github.com///compare/v1.0.2...v1.0.3

Release v1.0.2

09 Jan 01:15
Compare
Choose a tag to compare

⚠️注意:本次更新版本为v1.x,不兼容v0.x版本,请谨慎更新,避免导致接口调用有误。

主要更新

  1. RapidTable的输入输出做了更新,采用dataclasses来封装,简化参数传递,便于后续使用,更新和维护。示例如下:
    # 输入
    @dataclass
    class RapidTableInput:
       model_type: Optional[str] = ModelType.SLANETPLUS.value
       model_path: Union[str, Path, None, Dict[str, str]] = None
       use_cuda: bool = False
       device: str = "cpu"
    
    # 输出
    @dataclass
    class RapidTableOutput:
       pred_html: Optional[str] = None
       cell_bboxes: Optional[np.ndarray] = None
       logic_points: Optional[np.ndarray] = None
       elapse: Optional[float] = None
    
    # 使用示例
    input_args = RapidTableInput(model_type="unitable")
    table_engine = RapidTable(input_args)
    
    img_path = 'test_images/table.jpg'
    table_results = table_engine(img_path)
    
    print(table_results.pred_html)
  2. 集成了Unitable项目最新表格识别算法,推理引擎为torch,提升了RapidTable的上限。
  3. 优化了模型下载和托管问题,模型托管在modelscope上。在使用时,只需要指定对应的model_type,即可自动下载对应模型。当然,也可以通过model_path来具体指定模型路径。

What's Changed

New Contributors

  • @SWHL made their first contribution in #40

Full Changelog: v0.1.0...v1.0.2

Release v0.3.0

25 Nov 14:29
3b524a5
Compare
Choose a tag to compare

Changelog

All notable changes to this project will be documented in this file.

0.3.0

🚀 Features

  • Adapt for onnx-gpu
  • Add logic points decode & vis

📚 Documentation

  • Update the link of downloading model

⚙️ Miscellaneous Tasks

  • Update readme

Release v0.2.0

17 Oct 13:20
Compare
Choose a tag to compare

🚀 Features

  • Adapt slanet plus model
  • Add slanet plus table rec

📚 Documentation

  • Update README

assets

17 Oct 10:02
09dfa28
Compare
Choose a tag to compare
Merge pull request #10 from RapidAI/add_slanet_plus_model

Add slanet plus model