forked from hemanthram/structure-based-drug-design
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
54 lines (41 loc) · 1.82 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
from torch_scatter import scatter_add
from numpy import pi as PI
from context_encoder import GaussianSmearing
from utils import ShiftedSoftplus, myknn
class SpatialClassifier(nn.Module):
def __init__(self, num_outputs, in_channels, num_filters=64, k=32, cutoff=10.0):
super().__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.lin1 = nn.Linear(in_channels, num_filters, bias=False)
self.lin2 = nn.Linear(num_filters, num_filters)
self.distnn = nn.Sequential(
nn.Linear(num_filters, num_filters),
ShiftedSoftplus(),
nn.Linear(num_filters, num_filters)
)
self.classifier = nn.Sequential(
nn.Linear(num_filters, num_filters),
ShiftedSoftplus(),
nn.Linear(num_filters, num_outputs),
)
self.distance_expansion = GaussianSmearing(stop=cutoff, num_gaussians=num_filters)
self.k = k
self.cutoff = cutoff
def forward(self, pos_query, pos_ctx, node_attr_ctx):
assign_idx = myknn(
x=pos_ctx,
y=pos_query,
k=self.k
)
dist_ij = torch.norm(pos_query[assign_idx[0]] - pos_ctx[assign_idx[1]], p=2, dim=-1).view(-1, 1).to(self.device)
node_attr_ctx_j = node_attr_ctx[assign_idx[1]]
W = self.distnn(self.distance_expansion(dist_ij))
h = self.lin2(W * self.lin1(node_attr_ctx_j))
C = 0.5 * (torch.cos(dist_ij * PI / self.cutoff) + 1.0) # (A, 1)
C = C * (dist_ij <= self.cutoff) * (dist_ij >= 0.0)
h = h * C.view(-1, 1) # (A, 1)
y = scatter_add(h, index=assign_idx[0], dim=0, dim_size=pos_query.size(0))
y_cls = self.classifier(y)
return y_cls