Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix cumsum with dtype specified #72

Merged
merged 3 commits into from
Aug 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ Changelog
=========


0.9.0 (2024-08-29)
0.9.0 (2024-08-30)
------------------

**New features**
Expand Down
30 changes: 16 additions & 14 deletions ndonnx/_core/_numericimpl.py
Original file line number Diff line number Diff line change
Expand Up @@ -568,18 +568,17 @@ def cumulative_sum(
else:
raise ValueError("axis must be specified for multi-dimensional arrays")

if dtype is None:
if isinstance(x.dtype, (dtypes.Unsigned, dtypes.NullableUnsigned)):
if ndx.iinfo(x.dtype).bits < 64:
out = x.astype(dtypes.int64)
else:
raise ndx.UnsupportedOperationError(
f"Cannot perform `cumulative_sum` using {x.dtype}"
)
if isinstance(x.dtype, (dtypes.Unsigned, dtypes.NullableUnsigned)):
if ndx.iinfo(x.dtype).bits < 64:
out = x.astype(dtypes.int64)
else:
out = x.astype(_determine_reduce_op_dtype(x, dtype, dtypes.int64))
return NotImplemented
elif dtype == dtypes.uint64 or dtype == dtypes.nuint64:
raise ndx.UnsupportedOperationError(
f"Unsupported dtype parameter for cumulative_sum {dtype} due to missing kernel support"
)
else:
out = out.astype(dtype)
cbourjau marked this conversation as resolved.
Show resolved Hide resolved
out = x.astype(_determine_reduce_op_dtype(x, None, dtypes.uint64))

out = from_corearray(
opx.cumsum(
Expand All @@ -589,10 +588,13 @@ def cumulative_sum(
)
)

if isinstance(x.dtype, dtypes.Unsigned):
out = out.astype(ndx.uint64)
elif isinstance(x.dtype, dtypes.NullableUnsigned):
out = out.astype(ndx.nuint64)
if dtype is None:
if isinstance(x.dtype, dtypes.Unsigned):
out = out.astype(ndx.uint64)
elif isinstance(x.dtype, dtypes.NullableUnsigned):
out = out.astype(ndx.nuint64)
else:
out = out.astype(dtype)

# Exclude axis and create zeros of that shape
if include_initial:
Expand Down
6 changes: 5 additions & 1 deletion ndonnx/_data_types/coretype.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,11 @@ def _parse_input(self, data: np.ndarray) -> dict[str, np.ndarray]:

def _cast_from(self, array: Array) -> Array:
if isinstance(array.dtype, CoreType):
return ndx.Array._from_fields(self, data=opx.cast(array._core(), to=self))
return (
ndx.Array._from_fields(self, data=opx.cast(array._core(), to=self))
if array.dtype != self
else array.copy()
)
else:
raise CastError(f"Cannot cast from {array.dtype} to {self}")

Expand Down
26 changes: 21 additions & 5 deletions tests/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -933,13 +933,14 @@ def test_dynamic_reshape_has_no_static_shape(x, shape):
)
@pytest.mark.parametrize("include_initial", [True, False])
@pytest.mark.parametrize(
"dtype",
"array_dtype",
[ndx.int32, ndx.int64, ndx.float32, ndx.float64, ndx.uint8, ndx.uint16, ndx.uint32],
)
@pytest.mark.parametrize(
"array, axis",
[
([1, 2, 3], None),
([100, 100], None),
([1, 2, 3], 0),
([[1, 2], [3, 4]], 0),
([[1, 2], [3, 4]], 1),
Expand All @@ -948,21 +949,36 @@ def test_dynamic_reshape_has_no_static_shape(x, shape):
([[[[1]]], [[[3]]]], 1),
],
)
def test_cumulative_sum(array, axis, include_initial, dtype):
a = ndx.asarray(array, dtype=dtype)
@pytest.mark.parametrize(
"cumsum_dtype",
[None, ndx.int32, ndx.float32, ndx.float64, ndx.uint8, ndx.int8],
)
def test_cumulative_sum(array, axis, include_initial, array_dtype, cumsum_dtype):
a = ndx.asarray(array, dtype=array_dtype)
assert_array_equal(
ndx.cumulative_sum(a, include_initial=include_initial, axis=axis).to_numpy(),
ndx.cumulative_sum(
a, include_initial=include_initial, axis=axis, dtype=cumsum_dtype
).to_numpy(),
np.cumulative_sum(
np.asarray(array, a.dtype.to_numpy_dtype()),
include_initial=include_initial,
axis=axis,
dtype=cumsum_dtype.to_numpy_dtype() if cumsum_dtype is not None else None,
),
)


def test_no_unsafe_cumulative_sum_cast():
with pytest.raises(
ndx.UnsupportedOperationError, match="Cannot perform `cumulative_sum`"
ndx.UnsupportedOperationError,
match="Unsupported operand type for cumulative_sum",
):
a = ndx.asarray([1, 2, 3], ndx.uint64)
ndx.cumulative_sum(a)

with pytest.raises(
ndx.UnsupportedOperationError,
match="Unsupported dtype parameter for cumulative_sum",
):
a = ndx.asarray([1, 2, 3], ndx.int32)
ndx.cumulative_sum(a, dtype=ndx.uint64)