Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Migrate np.dot to @ Operator #687

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
4 changes: 2 additions & 2 deletions quantecon/_compute_fp.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,11 +261,11 @@ def _compute_fixed_point_ig(T, v, max_iter, verbose, print_skip, is_approx_fp,
_, rho = _get_mixed_actions(tableaux_curr, bases_curr)

if Y.ndim <= 2:
x_new = rho.dot(Y[:m])
x_new = rho @ Y[:m]
else:
shape_Y = Y.shape
Y_2d = Y.reshape(shape_Y[0], np.prod(shape_Y[1:]))
x_new = rho.dot(Y_2d[:m]).reshape(shape_Y[1:])
x_new = (rho @ Y_2d[:m]).reshape(shape_Y[1:])

if verbose == 2:
error = np.max(np.abs(y_new - x_new))
Expand Down
148 changes: 74 additions & 74 deletions quantecon/_dle.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,11 +76,11 @@ def __init__(self, information, technology, preferences):
uc = np.hstack((np.eye(self.nc), np.zeros((self.nc, self.ng))))
ug = np.hstack((np.zeros((self.ng, self.nc)), np.eye(self.ng)))
phiin = np.linalg.inv(np.hstack((self.phic, self.phig)))
phiinc = uc.dot(phiin)
b11 = - self.thetah.dot(phiinc).dot(self.phii)
a1 = self.thetah.dot(phiinc).dot(self.gamma)
a12 = np.vstack((self.thetah.dot(phiinc).dot(
self.ud), np.zeros((self.nk, self.nz))))
phiinc = uc @ phiin
b11 = - self.thetah @ phiinc @ self.phii
a1 = self.thetah @ phiinc @ self.gamma
a12 = np.vstack((self.thetah @ phiinc @ self.ud,
np.zeros((self.nk, self.nz))))

# === Creation of the A Matrix for the state transition of the LQ problem === #

Expand All @@ -100,11 +100,11 @@ def __init__(self, information, technology, preferences):

# === Define R,W and Q for the payoff function of the LQ problem === #

self.H = np.hstack((self.llambda, self.pih.dot(uc).dot(phiin).dot(self.gamma), self.pih.dot(
uc).dot(phiin).dot(self.ud) - self.ub, -self.pih.dot(uc).dot(phiin).dot(self.phii)))
self.G = ug.dot(phiin).dot(
np.hstack((np.zeros((self.nd, self.nh)), self.gamma, self.ud, -self.phii)))
self.S = (self.G.T.dot(self.G) + self.H.T.dot(self.H)) / 2
self.H = np.hstack((self.llambda, self.pih @ uc @ phiin @ self.gamma, self.pih @
uc @ phiin @ self.ud - self.ub, -self.pih @ uc @ phiin @ self.phii))
self.G = ug @ phiin @ np.hstack((np.zeros((self.nd, self.nh)),
self.gamma, self.ud, -self.phii))
self.S = (self.G.T @ self.G + self.H.T @ self.H) / 2

self.nx = self.nh + self.nk + self.nz
self.n = self.ni + self.nh + self.nk + self.nz
Expand All @@ -122,7 +122,7 @@ def __init__(self, information, technology, preferences):

# === Construct output matrices for our economy using the solution to the LQ problem === #

self.A0 = self.A - self.B.dot(self.F)
self.A0 = self.A - self.B @ self.F

self.Sh = self.A0[0:self.nh, 0:self.nx]
self.Sk = self.A0[self.nh:self.nh + self.nk, 0:self.nx]
Expand All @@ -131,12 +131,12 @@ def __init__(self, information, technology, preferences):
self.Si = -self.F
self.Sd = np.hstack((np.zeros((self.nd, self.nh + self.nk)), self.ud))
self.Sb = np.hstack((np.zeros((self.nb, self.nh + self.nk)), self.ub))
self.Sc = uc.dot(phiin).dot(-self.phii.dot(self.Si) +
self.gamma.dot(self.Sk1) + self.Sd)
self.Sg = ug.dot(phiin).dot(-self.phii.dot(self.Si) +
self.gamma.dot(self.Sk1) + self.Sd)
self.Ss = self.llambda.dot(np.hstack((np.eye(self.nh), np.zeros(
(self.nh, self.nk + self.nz))))) + self.pih.dot(self.Sc)
self.Sc = uc @ phiin @ (-self.phii @ self.Si +
self.gamma @ self.Sk1 + self.Sd)
self.Sg = ug @ phiin @ (-self.phii @ self.Si +
self.gamma @ self.Sk1 + self.Sd)
self.Ss = self.llambda @ np.hstack((np.eye(self.nh), np.zeros(
(self.nh, self.nk + self.nz)))) + self.pih @ self.Sc

# === Calculate eigenvalues of A0 === #
self.A110 = self.A0[0:self.nh + self.nk, 0:self.nh + self.nk]
Expand All @@ -146,14 +146,14 @@ def __init__(self, information, technology, preferences):
# === Construct matrices for Lagrange Multipliers === #

self.Mk = -2 * self.beta.item() * (np.hstack((np.zeros((self.nk, self.nh)), np.eye(
self.nk), np.zeros((self.nk, self.nz))))).dot(self.P).dot(self.A0)
self.nk), np.zeros((self.nk, self.nz))))) @ self.P @ self.A0
self.Mh = -2 * self.beta.item() * (np.hstack((np.eye(self.nh), np.zeros(
(self.nh, self.nk)), np.zeros((self.nh, self.nz))))).dot(self.P).dot(self.A0)
(self.nh, self.nk)), np.zeros((self.nh, self.nz))))) @ self.P @ self.A0
self.Ms = -(self.Sb - self.Ss)
self.Md = -(np.linalg.inv(np.vstack((self.phic.T, self.phig.T))).dot(
np.vstack((self.thetah.T.dot(self.Mh) + self.pih.T.dot(self.Ms), -self.Sg))))
self.Mc = -(self.thetah.T.dot(self.Mh) + self.pih.T.dot(self.Ms))
self.Mi = -(self.thetak.T.dot(self.Mk))
self.Md = -(np.linalg.inv(np.vstack((self.phic.T, self.phig.T))) @
np.vstack((self.thetah.T @ self.Mh + self.pih.T @ self.Ms, -self.Sg)))
self.Mc = -(self.thetah.T @ self.Mh + self.pih.T @ self.Ms)
self.Mi = -(self.thetak.T @ self.Mk)

def compute_steadystate(self, nnc=2):
"""
Expand All @@ -168,13 +168,13 @@ def compute_steadystate(self, nnc=2):
zx = np.eye(self.A0.shape[0])-self.A0
self.zz = nullspace(zx)
self.zz /= self.zz[nnc]
self.css = self.Sc.dot(self.zz)
self.sss = self.Ss.dot(self.zz)
self.iss = self.Si.dot(self.zz)
self.dss = self.Sd.dot(self.zz)
self.bss = self.Sb.dot(self.zz)
self.kss = self.Sk.dot(self.zz)
self.hss = self.Sh.dot(self.zz)
self.css = self.Sc @ self.zz
self.sss = self.Ss @ self.zz
self.iss = self.Si @ self.zz
self.dss = self.Sd @ self.zz
self.bss = self.Sb @ self.zz
self.kss = self.Sk @ self.zz
self.hss = self.Sh @ self.zz

def compute_sequence(self, x0, ts_length=None, Pay=None):
"""
Expand All @@ -195,14 +195,14 @@ def compute_sequence(self, x0, ts_length=None, Pay=None):
lq = LQ(self.Q, self.R, self.A, self.B,
self.C, N=self.W, beta=self.beta)
xp, up, wp = lq.compute_sequence(x0, ts_length)
self.h = self.Sh.dot(xp)
self.k = self.Sk.dot(xp)
self.i = self.Si.dot(xp)
self.b = self.Sb.dot(xp)
self.d = self.Sd.dot(xp)
self.c = self.Sc.dot(xp)
self.g = self.Sg.dot(xp)
self.s = self.Ss.dot(xp)
self.h = self.Sh @ xp
self.k = self.Sk @ xp
self.i = self.Si @ xp
self.b = self.Sb @ xp
self.d = self.Sd @ xp
self.c = self.Sc @ xp
self.g = self.Sg @ xp
self.s = self.Ss @ xp

# === Value of J-period risk-free bonds === #
# === See p.145: Equation (7.11.2) === #
Expand All @@ -212,12 +212,12 @@ def compute_sequence(self, x0, ts_length=None, Pay=None):
self.R2_Price = np.empty((ts_length + 1, 1))
self.R5_Price = np.empty((ts_length + 1, 1))
for i in range(ts_length + 1):
self.R1_Price[i, 0] = self.beta * e1.dot(self.Mc).dot(np.linalg.matrix_power(
self.A0, 1)).dot(xp[:, i]) / e1.dot(self.Mc).dot(xp[:, i])
self.R2_Price[i, 0] = self.beta**2 * e1.dot(self.Mc).dot(
np.linalg.matrix_power(self.A0, 2)).dot(xp[:, i]) / e1.dot(self.Mc).dot(xp[:, i])
self.R5_Price[i, 0] = self.beta**5 * e1.dot(self.Mc).dot(
np.linalg.matrix_power(self.A0, 5)).dot(xp[:, i]) / e1.dot(self.Mc).dot(xp[:, i])
self.R1_Price[i, 0] = (self.beta * e1 @ self.Mc @ np.linalg.matrix_power(
self.A0, 1) @ xp[:, i]) / (e1 @ self.Mc @ xp[:, i])
self.R2_Price[i, 0] = (self.beta**2 * e1 @ self.Mc @ np.linalg.matrix_power(
self.A0, 2) @ xp[:, i]) / (e1 @ self.Mc @ xp[:, i])
self.R5_Price[i, 0] = (self.beta**5 * e1 @ self.Mc @ np.linalg.matrix_power(
self.A0, 5) @ xp[:, i]) / (e1 @ self.Mc @ xp[:, i])

# === Gross rates of return on 1-period risk-free bonds === #
self.R1_Gross = 1 / self.R1_Price
Expand All @@ -231,20 +231,20 @@ def compute_sequence(self, x0, ts_length=None, Pay=None):
# === Value of asset whose payout vector is Pay*xt === #
# See p.145: Equation (7.11.1)
if isinstance(Pay, np.ndarray) == True:
self.Za = Pay.T.dot(self.Mc)
self.Za = Pay.T @ self.Mc
self.Q = solve_discrete_lyapunov(
self.A0.T * self.beta**0.5, self.Za)
self.q = self.beta / (1 - self.beta) * \
np.trace(self.C.T.dot(self.Q).dot(self.C))
np.trace(self.C.T @ self.Q @ self.C)
self.Pay_Price = np.empty((ts_length + 1, 1))
self.Pay_Gross = np.empty((ts_length + 1, 1))
self.Pay_Gross[0, 0] = np.nan
for i in range(ts_length + 1):
self.Pay_Price[i, 0] = (xp[:, i].T.dot(self.Q).dot(
xp[:, i]) + self.q) / e1.dot(self.Mc).dot(xp[:, i])
self.Pay_Price[i, 0] = (xp[:, i].T @ self.Q @
xp[:, i] + self.q) / e1 @ self.Mc @ xp[:, i]
for i in range(ts_length):
self.Pay_Gross[i + 1, 0] = self.Pay_Price[i + 1,
0] / (self.Pay_Price[i, 0] - Pay.dot(xp[:, i]))
0] / (self.Pay_Price[i, 0] - Pay @ (xp[:, i]))
return

def irf(self, ts_length=100, shock=None):
Expand Down Expand Up @@ -276,22 +276,22 @@ def irf(self, ts_length=100, shock=None):
self.b_irf = np.empty((ts_length, self.nb))

for i in range(ts_length):
self.c_irf[i, :] = self.Sc.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.s_irf[i, :] = self.Ss.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.i_irf[i, :] = self.Si.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.k_irf[i, :] = self.Sk.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.h_irf[i, :] = self.Sh.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.g_irf[i, :] = self.Sg.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.d_irf[i, :] = self.Sd.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.b_irf[i, :] = self.Sb.dot(
np.linalg.matrix_power(self.A0, i)).dot(self.C).dot(shock).T
self.c_irf[i, :] = (self.Sc @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.s_irf[i, :] = (self.Ss @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.i_irf[i, :] = (self.Si @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.k_irf[i, :] = (self.Sk @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.h_irf[i, :] = (self.Sh @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.g_irf[i, :] = (self.Sg @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.d_irf[i, :] = (self.Sd @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T
self.b_irf[i, :] = (self.Sb @
np.linalg.matrix_power(self.A0, i) @ self.C @ shock).T

return

Expand All @@ -305,13 +305,13 @@ def canonical(self):
Ac2 = np.hstack((np.zeros((self.nz, self.nh)), self.a22))
Ac = np.vstack((Ac1, Ac2))
Bc = np.vstack((self.thetah, np.zeros((self.nz, self.nc))))
Rc1 = np.hstack((self.llambda.T.dot(self.llambda), -
self.llambda.T.dot(self.ub)))
Rc2 = np.hstack((-self.ub.T.dot(self.llambda), self.ub.T.dot(self.ub)))
Rc1 = np.hstack((self.llambda.T @ self.llambda, -
self.llambda.T @ self.ub))
Rc2 = np.hstack((-self.ub.T @ self.llambda, self.ub.T @ self.ub))
Rc = np.vstack((Rc1, Rc2))
Qc = self.pih.T.dot(self.pih)
Qc = self.pih.T @ self.pih
Nc = np.hstack(
(self.pih.T.dot(self.llambda), -self.pih.T.dot(self.ub)))
(self.pih.T @ self.llambda, -self.pih.T @ self.ub))

lq_aux = LQ(Qc, Rc, Ac, Bc, N=Nc, beta=self.beta)

Expand All @@ -320,9 +320,9 @@ def canonical(self):
self.F_b = F1[:, 0:self.nh]
self.F_f = F1[:, self.nh:]

self.pihat = np.linalg.cholesky(self.pih.T.dot(
self.pih) + self.beta.dot(self.thetah.T).dot(P1[0:self.nh, 0:self.nh]).dot(self.thetah)).T
self.llambdahat = self.pihat.dot(self.F_b)
self.ubhat = - self.pihat.dot(self.F_f)
self.pihat = np.linalg.cholesky(self.pih.T @
self.pih + self.beta @ self.thetah.T @ P1[0:self.nh, 0:self.nh] @ self.thetah).T
self.llambdahat = self.pihat @ self.F_b
self.ubhat = - self.pihat @ self.F_f

return
44 changes: 22 additions & 22 deletions quantecon/_kalman.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,9 +162,9 @@ def whitener_lss(self):
A, C, G, H = self.ss.A, self.ss.C, self.ss.G, self.ss.H

Atil = np.vstack([np.hstack([A, np.zeros((n, n)), np.zeros((n, l))]),
np.hstack([np.dot(K, G),
A-np.dot(K, G),
np.dot(K, H)]),
np.hstack([K @ G,
A- K @ G,
K @ H]),
np.zeros((l, 2*n + l))])

Ctil = np.vstack([np.hstack([C, np.zeros((n, l))]),
Expand Down Expand Up @@ -200,16 +200,16 @@ def prior_to_filtered(self, y):
"""
# === simplify notation === #
G, H = self.ss.G, self.ss.H
R = np.dot(H, H.T)
R = H @ H.T

# === and then update === #
y = np.atleast_2d(y)
y.shape = self.ss.k, 1
E = np.dot(self.Sigma, G.T)
F = np.dot(np.dot(G, self.Sigma), G.T) + R
M = np.dot(E, inv(F))
self.x_hat = self.x_hat + np.dot(M, (y - np.dot(G, self.x_hat)))
self.Sigma = self.Sigma - np.dot(M, np.dot(G, self.Sigma))
E = self.Sigma @ G.T
F = G @ self.Sigma @ G.T + R
M = E @ inv(F)
self.x_hat = self.x_hat + M @ (y - G @ self.x_hat)
self.Sigma = self.Sigma - M @ G @ self.Sigma

def filtered_to_forecast(self):
"""
Expand All @@ -220,11 +220,11 @@ def filtered_to_forecast(self):
"""
# === simplify notation === #
A, C = self.ss.A, self.ss.C
Q = np.dot(C, C.T)
Q = C @ C.T

# === and then update === #
self.x_hat = np.dot(A, self.x_hat)
self.Sigma = np.dot(A, np.dot(self.Sigma, A.T)) + Q
self.x_hat = A @ self.x_hat
self.Sigma = A @ self.Sigma @ A.T + Q

def update(self, y):
"""
Expand Down Expand Up @@ -265,13 +265,13 @@ def stationary_values(self, method='doubling'):

# === simplify notation === #
A, C, G, H = self.ss.A, self.ss.C, self.ss.G, self.ss.H
Q, R = np.dot(C, C.T), np.dot(H, H.T)
Q, R = C @ C.T, H @ H.T

# === solve Riccati equation, obtain Kalman gain === #
Sigma_infinity = solve_discrete_riccati(A.T, G.T, Q, R, method=method)
temp1 = np.dot(np.dot(A, Sigma_infinity), G.T)
temp2 = inv(np.dot(G, np.dot(Sigma_infinity, G.T)) + R)
K_infinity = np.dot(temp1, temp2)
temp1 = A @ Sigma_infinity @ G.T
temp2 = inv(G @ Sigma_infinity @ G.T + R)
K_infinity = temp1 @ temp2

# == record as attributes and return == #
self._Sigma_infinity, self._K_infinity = Sigma_infinity, K_infinity
Expand Down Expand Up @@ -301,21 +301,21 @@ def stationary_coefficients(self, j, coeff_type='ma'):
P_mat = A
P = np.identity(self.ss.n) # Create a copy
elif coeff_type == 'var':
coeffs.append(np.dot(G, K_infinity))
P_mat = A - np.dot(K_infinity, G)
coeffs.append(G @ K_infinity)
P_mat = A - K_infinity @ G
P = np.copy(P_mat) # Create a copy
else:
raise ValueError("Unknown coefficient type")
while i <= j:
coeffs.append(np.dot(np.dot(G, P), K_infinity))
P = np.dot(P, P_mat)
coeffs.append(G @ P @ K_infinity)
P = P @ P_mat
i += 1
return coeffs

def stationary_innovation_covar(self):
# == simplify notation == #
H, G = self.ss.H, self.ss.G
R = np.dot(H, H.T)
R = H @ H.T
Sigma_infinity = self.Sigma_infinity

return np.dot(G, np.dot(Sigma_infinity, G.T)) + R
return G @ Sigma_infinity @ G.T + R
Loading
Loading