Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix: #14 Add new sorting algo (merge sort) #20

Merged
merged 1 commit into from
Oct 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions algorithms/searching and sorting/merge sort/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Merge Sort

## What is merge sort?
Merge sort is a sorting algorithm based on the Divide and conquer strategy. It works by recursively dividing the array into two equal halves, then sort them and combine them.
It takes a time of (n logn) in the worst case.

## Features of binary search
-Merge Sort is useful for sorting linked lists.
-Merge Sort is a stable sort which means that the same element in an array maintain their original positions with respect to each other.
-Overall time complexity of Merge sort is O(nLogn). It is more efficient as it is in worst case also the runtime is O(nlogn)
-The space complexity of Merge sort is O(n). This means that this algorithm takes a lot of space and may slower down operations for the last data sets.
71 changes: 71 additions & 0 deletions algorithms/searching and sorting/merge sort/merge sort.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#include<iostream>
using namespace std;
void swapping(int &a, int &b) { //swap the content of a and b
int temp;
temp = a;
a = b;
b = temp;
}
void display(int *array, int size) {
for(int i = 0; i<size; i++)
cout << array[i] << " ";
cout << endl;
}
void merge(int *array, int l, int m, int r) {
int i, j, k, nl, nr;
//size of left and right sub-arrays
nl = m-l+1; nr = r-m;
int larr[nl], rarr[nr];
//fill left and right sub-arrays
for(i = 0; i<nl; i++)
larr[i] = array[l+i];
for(j = 0; j<nr; j++)
rarr[j] = array[m+1+j];
i = 0; j = 0; k = l;
//marge temp arrays to real array
while(i < nl && j<nr) {
if(larr[i] <= rarr[j]) {
array[k] = larr[i];
i++;
}else{
array[k] = rarr[j];
j++;
}
k++;
}
while(i<nl) { //extra element in left array
array[k] = larr[i];
i++; k++;
}
while(j<nr) { //extra element in right array
array[k] = rarr[j];
j++; k++;
}
}
void mergeSort(int *array, int l, int r) {
int m;
if(l < r) {
int m = l+(r-l)/2;
// Sort first and second arrays
mergeSort(array, l, m);
mergeSort(array, m+1, r);
merge(array, l, m, r);
}
}
int main() {
int n;
cout << "Enter the number of elements: ";
cin >> n;
int arr[n]; //create an array with given number of elements
cout << "Enter elements:" << endl;
for(int i = 0; i<n; i++) {
cin >> arr[i];
}
cout << "Array before Sorting: ";
display(arr, n);
mergeSort(arr, 0, n-1); //(n-1) for last index
cout << "Array after Sorting: ";
display(arr, n);
}