Pytorch implementation of Deep Generic Representations for Domain-Generalized Anomalous Sound Detection: https://arxiv.org/abs/2409.05035
-
Install the requirements
pip install -r requirements.txt
-
Download the DCASE2020T2 and DCASE2023T2 datasets and place them according to the given directory structure specified in
data_config.yaml
. -
Download pre-trained weights of BEATs from https://github.com/microsoft/unilm/tree/master/beats and place them in a pre-trained directory.
Run GenRep using MemMixup with Ks=990 (best performance).
python run_genrep_dcase2023.py \
--dataset_name dcase2023 \
--model_name beats_ft1 \
--pretrained_model_dir <path_to_pretrained_model> \
--temporal_pooling \
--n_mix_support 990 \
--alpha 0.9 \
--save_official
After run the above script, you can also evaluate the performance using DCASE2023T2 official evaluator (you should get the same result as above):
bash dcase2023_task2_evaluator/03_evaluation_eval_data.sh
with 200-shot
python run_genrep_dcase2020.py \
--dataset_name dcase2020 \
--model_name beats_ft1 \
--pretrained_model_dir <path_to_pretrained_model> \
--temporal_pooling \
--num_samples 200
- We thanks the authors of BEATs for providing the pre-trained weights.
- We thanks SPADE, ssl4asd, STgram-MFN, DCASE2023 for providing the codebase and evaluation scripts.
If you find this work useful, please consider citing:
@misc{saengthong2024deep,
title={Deep Generic Representations for Domain-Generalized Anomalous Sound Detection},
author={Phurich Saengthong and Takahiro Shinozaki},
year={2024},
eprint={2409.05035},
archivePrefix={arXiv},
primaryClass={cs.SD}
}