Skip to content

PSI-Intention2022/PSI-Intent-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Baseline of Pedestrian Intent Estimation on PSI dataset.

image image

(PSI2.0 is an extension dataset of PSI1.0 dataset.)

🔖 News :


1. PSI dataset Structure

Note:

* variable * denotes variable, will be replaced by specific value.

"key_name" is key in dictionary.

(1) Computer Vision Objects Annotations

classes = ['pedestrian', 'rider','car', 'bus', 'bicycle', 'semi-truck', 'motorcycle', 'traffic sign', 'traffic light', 'construction cone']

skeleton = ['right_shoulder', 'left_eye', 'right_hip', 'right_ear', 'right_eye', 'right_wrist', 'left_elbow', 'left_knee', 'left_ear', 'right_elbow', 'right_ankle', 'left_ankle', 'left_hip', 'right_knee', 'nose', 'left_wrist', 'left_shoulder']

db = {
	'video_name': *video_name*,
	'frames': {
		'frame_*frameId*': {
			'speed(km/hr)': str, # e.g., "72"
			'gps': [str, str], # [N/S, W/E] e.g., ["N39.602013","W86.159046"]
			'time': str, # 'hh:mm:ss', e.g., "16:57:20"
			'cv_annotation': {
				'*objType*_track_*trackId*': {
					'object_type': str, # e.g., 'car', 'pedestrian', etc.
					'track_id': str, # e.g, 'track_3'
					'bbox': [float, float, float, float], # [xtl, ytl, xbr, ybr]
					'observed_frames': [int, int, int, ...], # e.g., [153, 154, 155, ...]
				}
			}
		}
	}
}

(2) Cognitive Pedestrian Cross Intent Annotations

db = {
	'video_name': *video_name*,
	'pedestrians': {
		*pedestrianId*: {
			'observed_frames': [], # e.g., [123, 124, 125, ...]
			'cv_annotations': {
				'bboxes': [[float, float, float, float], ...] # e.g., [box1, box2, box3, ...]
			},
			'cognitive_annotations': {
				*annotatorId1*: {
						'intent': [str, str, ...], # [intent1, intent2, ...], ['not_sure', 'cross', 'not_cross']
						'description': [str, str, ...],
						'key_frame': [int, int, ...] # 0: not key frame, 1: key frame 
				},
				*annotatorId2*: {
						'intent': [str, str, ...], # 
						'description': [str, str, ...], 
						'key_frame': [int, int, ...]
				},
                ...
			}
		}
	}
}

(3). Missing or error in Data/Annotation

(a) Missing cv annotation: [video_0064, video_0103, video_0155, video_0162, video_0167, video_0173, video_0201]

(b) Missing speed data: video_0032, video_0055, video_0093

2. Intent Prediction Baseline

(0) Arguments and Experiments Settings

# Experimental Setting
Input: Observed video sequence + target pedestrian bounding box sequence
Output: Intent Prediction (+ Explanation embeddings)
Observed sequence length: 15 frames (0.5s for 30 fps)
Prediction: 1 output - intent prediction
Overlap rate: 0.9 for traingin/validation, 1 for test 
              (To sample tracks with stride length = len(observed_sequence_length) * overlap rate
Video Splits: 
    ('./splits/PSI2.0_split.json')
        - Train: Video_0001 ~ Video_0110
        - Val: Video_0111 ~ Video_0146
        - Test: Video_0147 ~ Video_0204
    ('./splits/PSI1.0_split.json')
        - Train: Video_0001 ~ Video_0082
        - Val: Video_0083 ~ Video_0088
        - Test: Video_0089 ~ Video_0110

(1) Generate database

./database/create_database(args)

Organize the data into format as:

db = {
    - *video_name*: { # video name
        - *pedestrian_id*: { # target pedestrian name
            - 'frames': [0, 1, 2, ...], # list of frames that the target pedestrian appear
            - 'cv_annotations': {
                - 'track_id': *track_id*, # target pedestrian's track_id, obtained from raw annoation
                - 'bbox': [[xtl, ytl, xbr, ybr], [], [], ...], # list of bounding boxes of the target pedestrian appeared
            },
            - 'nlp_annotations': {
                - *annotator_id*: { # annotator's id/name
                    - 'intent': [], # list of crossing itnent at speific frame, extended from key-frame annotations 
                    - 'description': [], # list of explanation of the intent estimation for every frame from the current annotator_id
                    - 'key_frame': [] # if the specific frame is key-frame, directly annotated by the annotator. 0-NOT key-frame, 1-key-frame
                },
                ...
            }
        }
    }
}

Pedestrian crossing intent ground-truth:

PSI has three kinds of intent annotation ("cross", "not sure", "not cross") from multiple annotators (24 for PSI100 and at least 9 for PSI200) for each target pedestrian in each frame. There are different strategies to utilize and benefit from all these annotations. Here in this baseline, we process the intent annotation as a binary classification problem, "Crossing" or "Not Crossing" via major voting startegy. Specifically, if one annotator label the target pedestrian as "cross/not sure/not cross", it will be counted as voting weight "1.0/0.5/0.0". After averaging the votes of all annotators, denoted as 'avg_intent_vote', the ground-truth intent annotation is "Crossing" if $avg_intent_vote >= 0.5$, and "Not Crossing" if $avg_intent_vote < 0.5$.

(2) training / validation / test split

Our splits are provided in ./splits. Specifically, for PSI100, all videos are splited into train/val/test as ratio $0.75:0.05:0.2$. For PSI200, we take the first 110 videos (same as all PSI100 data) as training set, video_0111 ~ video_0146 as validation, and the rest 50 videos are for test.

(3) Run training

python main.py

(4) Evaluation Metrics

Acc: overall accuracy
mAcc: class-wise mean accuracy
F1: F1 score

(4). Environment

Python 3.8
PyTorch 1.10.0 + Cuda 111
Tensorboard 2.10.1

(5) Notes

This baseline only take the bounding boxes sequence of the target pedestrian as input. However, PSI contains various multi-modal annotations and information available for further exploration to contribute to the intent prediction. E.g., Video sequence, other road users bounding boxes, detailed text-based explanation annotations, etc.

References

[1] Tina Chen, Taotao Jing, Renran Tian, Yaobin Chen, Joshua Domeyer, Heishiro Toyoda, Rini Sherony, Zhengming Ding. "Psi: A pedestrian behavior dataset for socially intelligent autonomous car." arXiv preprint arXiv:2112.02604 (2021).

[2] Chen, Tina, Renran Tian, and Zhengming Ding. "Visual reasoning using graph convolutional networks for predicting pedestrian crossing intention." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3103-3109. 2021.

Contact

Please feel free to send any questions or comments to [email protected]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published