Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
Achazwl committed Feb 28, 2023
1 parent d759921 commit c3fa450
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 1 deletion.
23 changes: 23 additions & 0 deletions README-ZH.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,9 @@

## 最新动态

- 2023/02/28 [**ModelCenter 1.0.1**](https://github.com/OpenBMB/ModelCenter/releases/tag/v1.0.0) 支持 FLAN-T5 (fp32) 版本。
- 2022/11/21 [**ModelCenter 1.0.0**](https://github.com/OpenBMB/ModelCenter/releases/tag/v1.0.0) 支持 BMTrain>=0.2.0。
- 2022/07/14 [**ModelCenter 0.1.5**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.5) 新增 Mengzi, GLM, Longformer, KV_PLM。
- 2022/07/05 [**ModelCenter 0.1.3**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.3) 新增 MT5, T5v1.1, ViT, Wenzhong 支持。
- 2022/04/27 [**ModelCenter 0.1.1**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.1) 新增 Roberta 支持。
- 2022/04/06 [**ModelCenter 0.1.0**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.0) ModelCenter 公开发布了第一个稳定版本, 修复了一些模型性能上和显存占用上的问题.
Expand Down Expand Up @@ -258,6 +261,7 @@ $ torchrun --nnodes=${NNODES} --nproc_per_node=${GPU_PER_NODE} --rdzv_id=1 --rdz
- bert-large-uncased
- bert-base-chinese
- bert-base-multilingual-cased
- kv-plm

- RoBERTa[^4]. 我们支持使用 ``Roberta.from_pretrained(identifier)`` 来加载下列模型:

Expand All @@ -281,18 +285,37 @@ $ torchrun --nnodes=${NNODES} --nproc_per_node=${GPU_PER_NODE} --rdzv_id=1 --rdz
- mt5-large
- mt5-xl
- mt5-xxl
- mengzi-t5-base
- flan-t5-small
- flan-t5-base
- flan-t5-large
- flan-t5-xl
- flan-t5-xxl

- GPT-2[^6]. 我们支持使用 ``GPT2.from_pretrained(identifier)`` 来加载下列模型:

- gpt2-base
- gpt2-medium
- gpt2-large
- gpt2-xl
- wenzhong-gpt2-3.5b

- GPT-J[^7]. 我们支持使用 ``GPTj.from_pretrained(identifier)`` 来加载下列模型:

- gptj-6b

- Longformer[[paper](https://arxiv.org/abs/2004.05150)]. 我们支持使用 `` Longformer.from_pretrained(identifier)`` 来加载下列模型:

- lawformer

- GLM[[paper](https://arxiv.org/abs/2103.10360)]. 我们支持使用 ``GLM.from_pretrained(identifier)`` 来加载下列模型:

- glm-10b-zh

- ViT[[paper](https://arxiv.org/abs/2010.11929)]. 我们支持使用 `` ViT.from_pretrained(identifier)`` 来加载下列模型:

- vit-base-patch16-224

## 运行性能

你可以在 [OpenBMB/BMTrain](https://github.com/OpenBMB/BMTrain) 仓库中找到更多的性能测试效果.
Expand Down
9 changes: 8 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,9 @@
</p>

## What's New
- 2022/07/14 [**ModelCenter 0.1.4**]() ModelCenter supports Mengzi, GLM, Longformer, and KV_PLM.
- 2023/02/28 [**ModelCenter 1.0.1**]() ModelCenter supports FLAN-T5 (fp32) version.
- 2022/11/21 [**ModelCenter 1.0.0**]() ModelCenter supports BMTrain>=0.2.0.
- 2022/07/14 [**ModelCenter 0.1.5**]() ModelCenter supports Mengzi, GLM, Longformer, and KV_PLM.
- 2022/07/05 [**ModelCenter 0.1.3**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.3) ModelCenter supports mT5, T5v1.1, ViT, and Wenzhong.
- 2022/04/27 [**ModelCenter 0.1.1**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.1) ModelCenter supports RoBERTa.
- 2022/04/06 [**ModelCenter 0.1.0**](https://github.com/OpenBMB/ModelCenter/releases/tag/v0.1.0) ModelCenter has publicly released the first stable version, which fixes some bugs in model performance and GPU memory usage.
Expand Down Expand Up @@ -298,6 +300,11 @@ More information can be found from the [documentation](https://pytorch.org/docs/
- mt5-xl
- mt5-xxl
- mengzi-t5-base
- flan-t5-small
- flan-t5-base
- flan-t5-large
- flan-t5-xl
- flan-t5-xxl

- GPT-2[[paper](http://www.persagen.com/files/misc/radford2019language.pdf)]. We currently support loading the following checkpoint via ``GPT2.from_pretrained(identifier)`` of the following:

Expand Down

0 comments on commit c3fa450

Please sign in to comment.