Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Final polynomial check [SyncWith:crypto3-zk#307] #344

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .github/workflows/run_tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,9 @@ jobs:
blueprint_verifiers_placeholder_gate_component_test,
blueprint_proxy_test
blueprint_mock_mocked_components_test
blueprint_component_batch_test
blueprint_verifiers_placeholder_expression_evaluation_component_test
blueprint_verifiers_placeholder_final_polynomial_check_test
] # Tests to execute
include: # Abused to enable proof generation for some tests; add more as needed
- target: blueprint_algebra_fields_plonk_non_native_logic_ops_test
Expand Down
261 changes: 261 additions & 0 deletions include/nil/blueprint/benchmarks/circuit_generator.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
//---------------------------------------------------------------------------//
// Copyright (c) 2024 Dmitrii Tabalin <[email protected]>=
//
// MIT License
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//---------------------------------------------------------------------------//

#pragma once

#include <functional>

#include <boost/random.hpp>

#include <nil/crypto3/zk/snark/arithmetization/plonk/table_description.hpp>
#include <nil/crypto3/zk/snark/arithmetization/plonk/constraint_system.hpp>
#include <nil/crypto3/zk/snark/arithmetization/plonk/assignment.hpp>
#include <nil/crypto3/zk/snark/arithmetization/plonk/constraint.hpp>
#include <nil/crypto3/zk/snark/arithmetization/plonk/gate.hpp>

#include <nil/crypto3/random/algebraic_engine.hpp>

#include <nil/blueprint/blueprint/plonk/circuit.hpp>
#include <nil/blueprint/blueprint/plonk/assignment.hpp>

namespace nil {
namespace blueprint {

template<typename BlueprintFieldType>
crypto3::zk::snark::plonk_variable<typename BlueprintFieldType::value_type> generate_random_global_var(
const assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
boost::random::mt19937 &random_engine) {

using var = crypto3::zk::snark::plonk_variable<typename BlueprintFieldType::value_type>;
const std::size_t witness_amount = assignments.witnesses_amount();
const std::size_t public_input_amount = assignments.public_inputs_amount();
const std::size_t constant_amount = assignments.constants_amount();
const std::size_t total_col_amount = witness_amount + public_input_amount + constant_amount;
const std::size_t rows_amount = assignments.rows_amount();
const std::size_t random_row =
boost::random::uniform_int_distribution<std::size_t>(0, rows_amount - 1)(random_engine);
std::size_t random_col =
boost::random::uniform_int_distribution<std::size_t>(0, total_col_amount - 1)(random_engine);
typename var::column_type column_type;
if (random_col < witness_amount) {
column_type = var::column_type::witness;
} else if (random_col < witness_amount + public_input_amount) {
column_type = var::column_type::public_input;
random_col -= witness_amount;
} else {
column_type = var::column_type::constant;
random_col -= witness_amount + public_input_amount;
}
return var(random_col, random_row, true, column_type);
}

template<typename BlueprintFieldType>
crypto3::zk::snark::plonk_variable<typename BlueprintFieldType::value_type> generate_random_local_var(
const assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
boost::random::mt19937 &random_engine) {

using var = crypto3::zk::snark::plonk_variable<typename BlueprintFieldType::value_type>;
const std::size_t witness_amount = assignments.witnesses_amount();
const std::size_t constant_amount = assignments.constants_amount();
const std::size_t total_col_amount = witness_amount + constant_amount;
const std::int32_t random_offset =
boost::random::uniform_int_distribution<std::int32_t>(-1, 1)(random_engine);
std::size_t random_col =
boost::random::uniform_int_distribution<std::size_t>(0, total_col_amount - 1)(random_engine);
typename var::column_type column_type;
if (random_col < witness_amount) {
column_type = var::column_type::witness;
} else {
column_type = var::column_type::constant;
random_col -= witness_amount;
}
return var(random_col, random_offset, true, column_type);
}

template<typename BlueprintFieldType>
void generate_random_copy_constraints(
const assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
circuit<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &bp,
const std::size_t num_constraints,
boost::random::mt19937 &random_engine) {

using var = crypto3::zk::snark::plonk_variable<typename BlueprintFieldType::value_type>;
for (std::size_t i = 0; i < num_constraints; ++i) {
const var a = generate_random_global_var(assignments, random_engine);
var b = generate_random_global_var(assignments, random_engine);
// note that we technically might not generate a unique copy constraint here and it
// might be already present
// for the sake of simplicity we don't check for that, as the probability of that is really small
// for the assignment tables of a reasonable size compared to the number of constraints
while (a == b) { [[unlikely]]
b = generate_random_global_var(assignments, random_engine);
}
bp.add_copy_constraint({a, b});
}
// Sanity check
BOOST_ASSERT(bp.copy_constraints().size() == num_constraints);
}

template<typename BlueprintFieldType>
void fill_assignment_table(
assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
const std::size_t rows_amount,
boost::random::mt19937 &random_engine) {

using value_type = typename BlueprintFieldType::value_type;
crypto3::random::algebraic_engine<BlueprintFieldType> engine(random_engine);
std::array<std::function<value_type&(std::size_t, std::size_t)>, 3> access_functions = {
[&assignments](std::size_t col, std::size_t row) -> value_type& {
return assignments.witness(col, row);
},
[&assignments](std::size_t col, std::size_t row) -> value_type& {
return assignments.public_input(col, row);
},
[&assignments](std::size_t col, std::size_t row) -> value_type& {
return assignments.constant(col, row);
}
};
std::array<std::size_t, 3> sizes = {
assignments.witnesses_amount(), assignments.public_inputs_amount(), assignments.constants_amount()};
for (const auto &column_access_pair :
{std::pair(sizes[0], access_functions[0]),
std::pair(sizes[1], access_functions[1]),
std::pair(sizes[2], access_functions[2])}) {
const std::size_t column_amount = column_access_pair.first;
const auto &column_access_function = column_access_pair.second;
for (std::size_t col = 0; col < column_amount; ++col) {
for (std::size_t row = 0; row < rows_amount; ++row) {
column_access_function(col, row) = engine();
}
}
}
}

template<typename BlueprintFieldType>
void fill_selectors(
assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
const circuit<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &bp,
boost::random::mt19937 &random_engine) {

// We use a separate algorithm for filling selectors, as they are 0/1
// In practicde the distribution is not uniform, but we ignore that for the purposes of this benchmark
// TODO: do something more clever
for (std::size_t i = 0; i < assignments.selectors_amount(); ++i) {
for (std::size_t row = 0; row < assignments.rows_amount(); ++row) {
assignments.selector(i, row) = random_engine() % 2;
}
}
}

template<typename BlueprintFieldType>
nil::crypto3::zk::snark::plonk_constraint<BlueprintFieldType> generate_random_constraint(
const assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
const std::size_t max_degree,
const std::size_t max_linear_comb_size,
boost::random::mt19937 &random_engine) {
// Strategy: generate two random polynomials of max_degree / 2, and then multiply them
// If max_degree % 2 != 0, we multiply the result by a random linear combination
// Which is incidentally the ouput of this function with max_degree = 1
// This generates very "wide" gates on average.
// I need a different algorithm probably? Unsure.
if (max_degree > 1) {
auto a = generate_random_constraint<BlueprintFieldType>(
assignments, max_degree / 2, max_linear_comb_size, random_engine);
auto b = generate_random_constraint<BlueprintFieldType>(
assignments, max_degree / 2, max_linear_comb_size, random_engine);
if (max_degree % 2 != 0) {
auto c = generate_random_constraint<BlueprintFieldType>(
assignments, 1, max_linear_comb_size, random_engine);
return a * b * c;
} else {
return a * b;
}
} else if (max_degree == 1) {
crypto3::random::algebraic_engine<BlueprintFieldType> engine(random_engine);
nil::crypto3::zk::snark::plonk_constraint<BlueprintFieldType> linear_comb;
const std::size_t linear_comb_size =
boost::random::uniform_int_distribution<std::size_t>(1, max_linear_comb_size)(random_engine);
for (std::size_t i = 0; i < linear_comb_size; i++) {
linear_comb += engine() * generate_random_local_var(assignments, random_engine);
}
linear_comb += engine();
return linear_comb;
} else {
BOOST_ASSERT_MSG(false, "max_degree must be > 0");
}
__builtin_unreachable();
}

template<typename BlueprintFieldType>
void generate_random_gate(
const assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
circuit<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &bp,
const std::size_t max_degree,
const std::size_t max_linear_comb_size,
const std::size_t constraints_amount,
boost::random::mt19937 &random_engine) {

std::vector<typename nil::crypto3::zk::snark::plonk_constraint<BlueprintFieldType>> constraints;
constraints.reserve(constraints_amount);
// first, ensure that we have at least one of the constraints with the given max_degree
constraints.emplace_back(generate_random_constraint<BlueprintFieldType>(
assignments, max_degree, max_linear_comb_size, random_engine));
// next, generate the rest of them
for (std::size_t i = 1; i < constraints_amount; ++i) {
const std::size_t degree = max_degree > 1 ?
boost::random::uniform_int_distribution<std::size_t>(1, max_degree)(random_engine)
: 1;
constraints.emplace_back(generate_random_constraint<BlueprintFieldType>(
assignments, degree, max_linear_comb_size, random_engine));
}
bp.add_gate(constraints);
}


template<typename BlueprintFieldType>
void generate_random_gates(
const assignment<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &assignments,
circuit<crypto3::zk::snark::plonk_constraint_system<BlueprintFieldType>> &bp,
const std::size_t gates_amount,
const std::size_t max_degree,
const std::size_t max_linear_comb_size,
const std::size_t constraints_amount,
boost::random::mt19937 &random_engine) {

BOOST_ASSERT_MSG(max_degree > 0, "max_degree must be > 0");
BOOST_ASSERT_MSG(max_linear_comb_size > 0, "max_linear_comb_size must be > 0");
BOOST_ASSERT_MSG(constraints_amount > 0, "constraints_amount must be > 0");

// Generate a gate with a given max_degree
generate_random_gate(assignments, bp, max_degree, max_linear_comb_size, constraints_amount, random_engine);
// Generate the rest of the gates with random max degrees
for (std::size_t i = 1; i < gates_amount; ++i) {
const std::size_t degree = max_degree > 1 ?
boost::random::uniform_int_distribution<std::size_t>(1, max_degree)(random_engine)
: 1;
generate_random_gate(assignments, bp, degree, max_linear_comb_size, constraints_amount, random_engine);
}
}
} // namespace blueprint
} // namespace nil
Loading
Loading