forked from qubole/sparklens
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add tests for the stage skew analyzer
- Loading branch information
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
107 changes: 107 additions & 0 deletions
107
src/test/scala/com/qubole/sparklens/analyzer/StageSkewAnalyzerSuite.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package com.qubole.sparklens.analyzer | ||
|
||
import com.qubole.sparklens.common.{AggregateMetrics, AppContext, ApplicationInfo} | ||
import com.qubole.sparklens.timespan.{ExecutorTimeSpan, HostTimeSpan, JobTimeSpan, StageTimeSpan} | ||
import com.qubole.sparklens.helper.JobOverlapHelper | ||
|
||
import org.scalatest.funsuite.AnyFunSuite | ||
|
||
import org.apache.spark.SparkConf | ||
|
||
import scala.collection.mutable | ||
|
||
class StageSkewAnalyzerSuite extends AnyFunSuite { | ||
|
||
val startTime = 0 | ||
val endTime = 60000000000L | ||
// Make a non-SQL task | ||
val stage1 = new StageTimeSpan(1, 1, false) | ||
// SQL tasks | ||
// stage 2 should impact the target number of partitions | ||
val stage2 = new StageTimeSpan(2, 2, true) | ||
// stage 3 should have us turn off AQE if present | ||
val stage3 = new StageTimeSpan(3, 1, true) | ||
stage1.shuffleRead = true | ||
stage1.taskExecutionTimes = Array[Int](6000000) | ||
stage2.shuffleRead = true | ||
stage2.taskExecutionTimes = 0.to(200).map(x => 60000 * 2).toArray | ||
stage3.shuffleRead = true | ||
// One really long task | ||
stage3.taskExecutionTimes = Array[Int](60000000) | ||
|
||
def createDummyAppContext(stageTimeSpans: mutable.HashMap[Int, StageTimeSpan]): AppContext = { | ||
|
||
val jobMap = new mutable.HashMap[Long, JobTimeSpan] | ||
|
||
val jobSQLExecIDMap = new mutable.HashMap[Long, Long] | ||
|
||
val execStartTimes = new mutable.HashMap[String, ExecutorTimeSpan]() | ||
|
||
val appInfo = new ApplicationInfo() | ||
appInfo.startTime = startTime | ||
appInfo.endTime = endTime | ||
|
||
|
||
val conf = new SparkConf() | ||
|
||
new AppContext(appInfo, | ||
new AggregateMetrics(), | ||
mutable.HashMap[String, HostTimeSpan](), | ||
mutable.HashMap[String, ExecutorTimeSpan](), | ||
jobMap, | ||
jobSQLExecIDMap, | ||
stageTimeSpans, | ||
mutable.HashMap[Int, Long](), | ||
Some(conf.getAll.toMap)) | ||
} | ||
|
||
test("Change number of partitions when not skewed but long") { | ||
val stageTimeSpans = new mutable.HashMap[Int, StageTimeSpan] | ||
stageTimeSpans(1) = stage1 | ||
stageTimeSpans(2) = stage2 | ||
val ac = createDummyAppContext(stageTimeSpans) | ||
val sska = new StageSkewAnalyzer() | ||
val suggestions = sska.computeSuggestions(ac) | ||
assert(suggestions.get("spark.sql.adaptive.coalescePartitions.enabled") == None, | ||
"Leave AQE on if we 'just' have long partitions") | ||
assert(suggestions.get("spark.sql.shuffle.partitions") == Some("400"), | ||
"We aim for lots of partitions") | ||
} | ||
|
||
test("Turn off AQE if stage 3 is present") { | ||
val stageTimeSpans = new mutable.HashMap[Int, StageTimeSpan] | ||
stageTimeSpans(1) = stage1 | ||
stageTimeSpans(3) = stage3 | ||
val ac = createDummyAppContext(stageTimeSpans) | ||
val sska = new StageSkewAnalyzer() | ||
val suggestions = sska.computeSuggestions(ac) | ||
assert(suggestions.get("spark.sql.adaptive.coalescePartitions.enabled") == Some("false"), | ||
"Turn of AQE when bad coalesce occurs") | ||
} | ||
|
||
test("stage 1 should do nothing") { | ||
val stageTimeSpans = new mutable.HashMap[Int, StageTimeSpan] | ||
stageTimeSpans(1) = stage1 | ||
val ac = createDummyAppContext(stageTimeSpans) | ||
val sska = new StageSkewAnalyzer() | ||
val suggestions = sska.computeSuggestions(ac) | ||
assert(suggestions == Map.empty[String, String], "Don't suggest on non-SQL stages") | ||
} | ||
} |