Add unsafe arithmetics for basic Arb types #2951
CI.yml
on: pull_request
Documentation
16m 5s
Matrix: test
Annotations
13 errors and 1 notice
test (1.10, macOS-latest)
Process completed with exit code 1.
|
test (1.10, ubuntu-latest)
Process completed with exit code 1.
|
test (1.6, ubuntu-latest)
Process completed with exit code 1.
|
test (1.11, ubuntu-latest)
Process completed with exit code 1.
|
test (nightly, ubuntu-latest)
Process completed with exit code 1.
|
test (1.10, windows-latest)
Process completed with exit code 1.
|
Documentation:
docs/src/complex.md#L667
doctest failure in src/complex.md:667-685
```jldoctest; setup = :(CC = ComplexField())
julia> s = CC(1, 2)
1.0000000000000000000 + 2.0000000000000000000*im
julia> z = CC("1.23", "3.45")
[1.230000000000000000 +/- 2.00e-19] + [3.450000000000000000 +/- 3.91e-19]*im
julia> a = sin(z)^2 + cos(z)^2
[1.000000000000000 +/- 4.92e-16] + [+/- 4.12e-16]*im
julia> b = zeta(z)
[0.685803329024164062 +/- 6.30e-19] + [-0.038574782404586856 +/- 7.54e-19]*im
julia> c = bessel_j(s, z)
[0.63189634741402481 +/- 4.85e-18] + [0.00970090757446076 +/- 4.66e-18]*im
julia> d = hypergeometric_1f1(s, s+1, z)
[-1.3355297330012291 +/- 5.83e-17] + [-0.1715020340928697 +/- 4.97e-17]*im
```
Subexpression:
a = sin(z)^2 + cos(z)^2
Evaluated output:
ERROR: type ComplexField has no field prec
Stacktrace:
[1] getproperty(x::ComplexField, f::Symbol)
@ Base ./Base.jl:37
[2] ^(x::ComplexFieldElem, y::Int64)
@ Nemo ~/work/Nemo.jl/Nemo.jl/src/arb/Complex.jl:217
[3] literal_pow(::typeof(^), x::ComplexFieldElem, ::Val{2})
@ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/oeXjP/src/NCRings.jl:131
[4] top-level scope
@ none:1
Expected output:
[1.000000000000000 +/- 4.92e-16] + [+/- 4.12e-16]*im
diff =
Warning: Diff output requires color.
[1.000000000000000 +/- 4.92e-16] + [+/- 4.12e-16]*imERROR: type ComplexField has no field prec
Stacktrace:
[1] getproperty(x::ComplexField, f::Symbol)
@ Base ./Base.jl:37
[2] ^(x::ComplexFieldElem, y::Int64)
@ Nemo ~/work/Nemo.jl/Nemo.jl/src/arb/Complex.jl:217
[3] literal_pow(::typeof(^), x::ComplexFieldElem, ::Val{2})
@ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/oeXjP/src/NCRings.jl:131
[4] top-level scope
@ none:1
|
Documentation:
docs/src/complex.md#L699
doctest failure in src/complex.md:699-731
```jldoctest; setup = :(CC = ComplexField())
julia> # These are two of the roots of x^5 + 3x + 1
julia> a = CC(1.0050669478588622428791051888364775253, -0.93725915669289182697903585868761513585)
[1.0050669478588623029 +/- 2.25e-20] - [0.93725915669289183718 +/- 1.50e-21]*im
julia> b = CC(-0.33198902958450931620250069492231652319)
-[0.33198902958450932088 +/- 4.15e-22]
julia> V1 = [CC(1), a, a^2, a^3, a^4, a^5]; # We recover the polynomial from one root....
julia> W = lindep(V1, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
julia> V2 = [CC(1), b, b^2, b^3, b^4, b^5]; # ...or from two
julia> Vs = [transpose(V1); transpose(V2)];
julia> X = lindep(Vs, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
```
Subexpression:
V1 = [CC(1), a, a^2, a^3, a^4, a^5]; # We recover the polynomial from one root....
Evaluated output:
ERROR: type ComplexField has no field prec
Stacktrace:
[1] getproperty(x::ComplexField, f::Symbol)
@ Base ./Base.jl:37
[2] ^(x::ComplexFieldElem, y::Int64)
@ Nemo ~/work/Nemo.jl/Nemo.jl/src/arb/Complex.jl:217
[3] literal_pow(::typeof(^), x::ComplexFieldElem, ::Val{2})
@ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/oeXjP/src/NCRings.jl:131
[4] top-level scope
@ none:1
Expected output:
diff =
Warning: Diff output requires color.
ERROR: type ComplexField has no field prec
Stacktrace:
[1] getproperty(x::ComplexField, f::Symbol)
@ Base ./Base.jl:37
[2] ^(x::ComplexFieldElem, y::Int64)
@ Nemo ~/work/Nemo.jl/Nemo.jl/src/arb/Complex.jl:217
[3] literal_pow(::typeof(^), x::ComplexFieldElem, ::Val{2})
@ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/oeXjP/src/NCRings.jl:131
[4] top-level scope
@ none:1
|
Documentation:
docs/src/complex.md#L699
doctest failure in src/complex.md:699-731
```jldoctest; setup = :(CC = ComplexField())
julia> # These are two of the roots of x^5 + 3x + 1
julia> a = CC(1.0050669478588622428791051888364775253, -0.93725915669289182697903585868761513585)
[1.0050669478588623029 +/- 2.25e-20] - [0.93725915669289183718 +/- 1.50e-21]*im
julia> b = CC(-0.33198902958450931620250069492231652319)
-[0.33198902958450932088 +/- 4.15e-22]
julia> V1 = [CC(1), a, a^2, a^3, a^4, a^5]; # We recover the polynomial from one root....
julia> W = lindep(V1, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
julia> V2 = [CC(1), b, b^2, b^3, b^4, b^5]; # ...or from two
julia> Vs = [transpose(V1); transpose(V2)];
julia> X = lindep(Vs, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
```
Subexpression:
W = lindep(V1, 20)
Evaluated output:
ERROR: UndefVarError: `V1` not defined
Stacktrace:
[1] top-level scope
@ none:1
Expected output:
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
diff =
Warning: Diff output requires color.
6-element Vector{ZZRingElem}:
1
3
0
0
0
1ERROR: UndefVarError: `V1` not defined
Stacktrace:
[1] top-level scope
@ none:1
|
Documentation:
docs/src/complex.md#L699
doctest failure in src/complex.md:699-731
```jldoctest; setup = :(CC = ComplexField())
julia> # These are two of the roots of x^5 + 3x + 1
julia> a = CC(1.0050669478588622428791051888364775253, -0.93725915669289182697903585868761513585)
[1.0050669478588623029 +/- 2.25e-20] - [0.93725915669289183718 +/- 1.50e-21]*im
julia> b = CC(-0.33198902958450931620250069492231652319)
-[0.33198902958450932088 +/- 4.15e-22]
julia> V1 = [CC(1), a, a^2, a^3, a^4, a^5]; # We recover the polynomial from one root....
julia> W = lindep(V1, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
julia> V2 = [CC(1), b, b^2, b^3, b^4, b^5]; # ...or from two
julia> Vs = [transpose(V1); transpose(V2)];
julia> X = lindep(Vs, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
```
Subexpression:
V2 = [CC(1), b, b^2, b^3, b^4, b^5]; # ...or from two
Evaluated output:
ERROR: type ComplexField has no field prec
Stacktrace:
[1] getproperty(x::ComplexField, f::Symbol)
@ Base ./Base.jl:37
[2] ^(x::ComplexFieldElem, y::Int64)
@ Nemo ~/work/Nemo.jl/Nemo.jl/src/arb/Complex.jl:217
[3] literal_pow(::typeof(^), x::ComplexFieldElem, ::Val{2})
@ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/oeXjP/src/NCRings.jl:131
[4] top-level scope
@ none:1
Expected output:
diff =
Warning: Diff output requires color.
ERROR: type ComplexField has no field prec
Stacktrace:
[1] getproperty(x::ComplexField, f::Symbol)
@ Base ./Base.jl:37
[2] ^(x::ComplexFieldElem, y::Int64)
@ Nemo ~/work/Nemo.jl/Nemo.jl/src/arb/Complex.jl:217
[3] literal_pow(::typeof(^), x::ComplexFieldElem, ::Val{2})
@ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/oeXjP/src/NCRings.jl:131
[4] top-level scope
@ none:1
|
Documentation:
docs/src/complex.md#L699
doctest failure in src/complex.md:699-731
```jldoctest; setup = :(CC = ComplexField())
julia> # These are two of the roots of x^5 + 3x + 1
julia> a = CC(1.0050669478588622428791051888364775253, -0.93725915669289182697903585868761513585)
[1.0050669478588623029 +/- 2.25e-20] - [0.93725915669289183718 +/- 1.50e-21]*im
julia> b = CC(-0.33198902958450931620250069492231652319)
-[0.33198902958450932088 +/- 4.15e-22]
julia> V1 = [CC(1), a, a^2, a^3, a^4, a^5]; # We recover the polynomial from one root....
julia> W = lindep(V1, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
julia> V2 = [CC(1), b, b^2, b^3, b^4, b^5]; # ...or from two
julia> Vs = [transpose(V1); transpose(V2)];
julia> X = lindep(Vs, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
```
Subexpression:
Vs = [transpose(V1); transpose(V2)];
Evaluated output:
ERROR: UndefVarError: `V1` not defined
Stacktrace:
[1] top-level scope
@ none:1
Expected output:
diff =
Warning: Diff output requires color.
ERROR: UndefVarError: `V1` not defined
Stacktrace:
[1] top-level scope
@ none:1
|
Documentation:
docs/src/complex.md#L699
doctest failure in src/complex.md:699-731
```jldoctest; setup = :(CC = ComplexField())
julia> # These are two of the roots of x^5 + 3x + 1
julia> a = CC(1.0050669478588622428791051888364775253, -0.93725915669289182697903585868761513585)
[1.0050669478588623029 +/- 2.25e-20] - [0.93725915669289183718 +/- 1.50e-21]*im
julia> b = CC(-0.33198902958450931620250069492231652319)
-[0.33198902958450932088 +/- 4.15e-22]
julia> V1 = [CC(1), a, a^2, a^3, a^4, a^5]; # We recover the polynomial from one root....
julia> W = lindep(V1, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
julia> V2 = [CC(1), b, b^2, b^3, b^4, b^5]; # ...or from two
julia> Vs = [transpose(V1); transpose(V2)];
julia> X = lindep(Vs, 20)
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
```
Subexpression:
X = lindep(Vs, 20)
Evaluated output:
ERROR: UndefVarError: `Vs` not defined
Stacktrace:
[1] top-level scope
@ none:1
Expected output:
6-element Vector{ZZRingElem}:
1
3
0
0
0
1
diff =
Warning: Diff output requires color.
6-element Vector{ZZRingElem}:
1
3
0
0
0
1ERROR: UndefVarError: `Vs` not defined
Stacktrace:
[1] top-level scope
@ none:1
|
Documentation
Process completed with exit code 1.
|
test (1.6, ubuntu-latest)
[setup-julia] If you are testing 1.6 as a Long Term Support (lts) version, consider using the new "lts" version specifier instead of "1.6" explicitly, which will automatically resolve the current lts.
|