Skip to content

This repository contains the extended appendix of the master thesis Multi-Objective and Evolutionary Reinforcement Learning Algorithms in Electric Vehicle Charging Management.

License

Notifications You must be signed in to change notification settings

NeeleKemper/morl-evorl-cm-supplement

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 

Repository files navigation

Comparative Analysis of Multi-Objective and Evolutionary Reinforcement Learning Algorithms in Electric Vehicle Charging Management - Extended Appendix

Appendix: Simulation

PV Power Curve

PV Power Curve: Hourly average power of the PV system over a recorded one-year period.

Appendix: Hyperparameter Optimization Results

Specific parameters for all agents are held constant, while others are subject to optimization. The values for these fixed parameters have been determined through previous manual random testing, ensuring a robust baseline for comparison. For the Multi-Objective Evolutionary Reinforcement Learning(MOEvoRL) models, parameters have been configured with a population size of 200 and a sigmoid activation function. The Multi-Objective Deep Deterministic Policy Gradient (MODDPG) models have a predefined network architecture consisting of three layers, each with 1024 units, both for the Actor and Critic networks. Adam optimizer is used for MODDPG optimization, with Relu as the activation function and Tanh for the output activation.

Parameter Distribution Min Max
sbx_prob uniform 0.6 0.95
mut_prob uniform 0.1 0.3
sbx_eta int_uniform 3 30
mut_eta int_uniform 3 30
net_arch categorical [32, 32], [32, 32, 32], [32, 32, 32, 32] -
batch_size categorical 8, 16, 32 -
env_iterations categorical 2, 5, 10 -
pop_size fixed 200 -
activation_function fixed sigmoid -

MOEvoRL-NSGA-II and MOEvoRL-SPEA2 Hyperparameter Search Space: The hyperparameter search space for the MOEvoRL-NSGA-II and MOEvoRL-SPEA2 agents.

Parameter Distribution Min Max
conn_add_prob uniform 0.6 0.9
conn_delete_prob uniform 0.1 0.4
node_add_prob uniform 0.6 0.9
node_delete_prob uniform 0.1 0.4
survival_threshold uniform 0.1 0.3
aggregation_mutate_rate uniform 0.1 0.3
weight_mutate_rate uniform 0.6 0.9
bias_mutate_rate uniform 0.6 0.9
batch_size categorical 8, 16, 32 -
env_iterations categorical 2, 5, 10 -
pop_size fixed 200 -
activation_function fixed sigmoid -

MOEvoRL-FF-NEAT and MOEvoRL-RNN-NEAT Hyperparameter Search Space: The hyperparameter search space for the MOEvoRL-FF-NEAT agents.

Parameter Distribution Min Max
gamma uniform 0.95 0.9999
tau uniform 0 0.1
per_alpha uniform 0.1 1.0
learning_rate uniform (1 \times 10^{-5}) (1 \times 10^{-4})
learning_starts int_uniform 1000 10000
policy_frequency int_uniform 1 20
buffer_size int_uniform (1 \times 10^5) (2 \times 10^6)
batch_size categorical 128, 256, 512 -
net_arch fixed [1024, 1024, 1024] -
activation_function fixed relu -
output_activation_function fixed tanh -
optimizer fixed adam -

MOODPG Hyperparameter Search Space: The hyperparameter search space for the MODDPG agents

MOEvoRL-NSGA-II Optimal Hyperparameters

Parameter Value
sbx_prob 0.90
mut_prob 0.18
sbx_eta 23
mut_eta 22
net_arch [32, 32, 32]
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-NSGA-II CS05-Med-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.75
mut_prob 0.26
sbx_eta 23
mut_eta 12
net_arch [32, 32, 32]
batch_size 16
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-NSGA-II CS05-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.83
mut_prob 0.29
sbx_eta 26
mut_eta 27
net_arch [32, 32, 32]
batch_size 16
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-NSGA-II CS10-Med-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.74
mut_prob 0.14
sbx_eta 19
mut_eta 15
net_arch [32, 32, 32]
batch_size 8
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-NSGA-II CS10-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.81
mut_prob 0.25
sbx_eta 10
mut_eta 25
net_arch [32, 32, 32]
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-NSGA-II CS15-Med-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.89
mut_prob 0.28
sbx_eta 27
mut_eta 28
net_arch [32, 32, 32]
batch_size 32
env_iterations 5
pop_size 200
activation_function sigmoid

MOEvoRL-NSGA-II CS15-Med-AR-42: Best hyperparameter parameter configuration.

MOEvoRL-SPEA2 Optimal Hyperparameters

Parameter Value
sbx_prob 0.88
mut_prob 0.21
sbx_eta 16
mut_eta 24
net_arch [32, 32, 32]
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-SPEA2 CS05-Med-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.76
mut_prob 0.20
sbx_eta 16
mut_eta 12
net_arch [32, 32, 32, 32]
batch_size 16
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-SPEA2 CS05-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.82
mut_prob 0.28
sbx_eta 14
mut_eta 8
net_arch [32, 32, 32]
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-SPEA2 CS10-Med-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.85
mut_prob 0.22
sbx_eta 18
mut_eta 13
net_arch [32, 32, 32, 32]
batch_size 16
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-SPEA2 CS10-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.92
mut_prob 0.29
sbx_eta 20
mut_eta 29
net_arch [32, 32, 32]
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-SPEA2 CS15-Med-42: Best hyperparameter parameter configuration.

Parameter Value
sbx_prob 0.95
mut_prob 0.18
sbx_eta 15
mut_eta 12
net_arch [32, 32, 32]
batch_size 32
env_iterations 5
pop_size 200
activation_function sigmoid

MOEvoRL-SPEA2 CS15-Med-AR-42: Best hyperparameter parameter configuration.

MOEvoRL-FF-NEAT Optimal Hyperparameters

Parameter Value
conn_add_prob 0.72
conn_delete_prob 0.25
node_add_prob 0.60
node_delete_prob 0.28
survival_threshold 0.20
aggregation_mutate_rate 0.22
weight_mutate_rate 0.89
bias_mutate_rate 0.64
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-FF-NEAT CS05-Med-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.73
conn_delete_prob 0.39
node_add_prob 0.79
node_delete_prob 0.32
survival_threshold 0.12
aggregation_mutate_rate 0.20
weight_mutate_rate 0.71
bias_mutate_rate 0.79
batch_size 8
env_iterations 2
pop_size 200
activation_function sigmoid

MOEvoRL-FF-NEAT CS05-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.79
conn_delete_prob 0.33
node_add_prob 0.70
node_delete_prob 0.28
survival_threshold 0.16
aggregation_mutate_rate 0.26
weight_mutate_rate 0.65
bias_mutate_rate 0.66
batch_size 16
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-FF-NEAT CS10-Med-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.82
conn_delete_prob 0.18
node_add_prob 0.67
node_delete_prob 0.31
survival_threshold 0.23
aggregation_mutate_rate 0.26
weight_mutate_rate 0.74
bias_mutate_rate 0.84
batch_size 16
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-FF-NEAT CS10-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.73
conn_delete_prob 0.13
node_add_prob 0.80
node_delete_prob 0.33
survival_threshold 0.18
aggregation_mutate_rate 0.16
weight_mutate_rate 0.63
bias_mutate_rate 0.81
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-FF-NEAT CS15-Med-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.70
conn_delete_prob 0.36
node_add_prob 0.61
node_delete_prob 0.34
survival_threshold 0.10
aggregation_mutate_rate 0.24
weight_mutate_rate 0.88
bias_mutate_rate 0.71
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-FF-NEAT CS15-Med-AR-42: Best hyperparameter parameter configuration.

MOEvoRL-RNN-NEAT Optimal Hyperparameters

Parameter Value
conn_add_prob 0.72
conn_delete_prob 0.35
node_add_prob 0.66
node_delete_prob 0.16
survival_threshold 0.17
aggregation_mutate_rate 0.24
weight_mutate_rate 0.81
bias_mutate_rate 0.78
batch_size 32
env_iterations 5
pop_size 200
activation_function sigmoid

MOEvoRL-RNN-NEAT CS05-Med-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.83
conn_delete_prob 0.39
node_add_prob 0.84
node_delete_prob 0.39
survival_threshold 0.27
aggregation_mutate_rate 0.23
weight_mutate_rate 0.87
bias_mutate_rate 0.85
batch_size 8
env_iterations 5
pop_size 200
activation_function sigmoid

MOEvoRL-RNN-NEAT CS05-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.76
conn_delete_prob 0.24
node_add_prob 0.77
node_delete_prob 0.25
survival_threshold 0.21
aggregation_mutate_rate 0.29
weight_mutate_rate 0.85
bias_mutate_rate 0.66
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-RNN-NEAT CS10-Med-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.75
conn_delete_prob 0.15
node_add_prob 0.75
node_delete_prob 0.20
survival_threshold 0.23
aggregation_mutate_rate 0.24
weight_mutate_rate 0.80
bias_mutate_rate 0.67
batch_size 32
env_iterations 10
pop_size 200
activation_function sigmoid

MOEvoRL-RNN-NEAT CS10-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.78
conn_delete_prob 0.24
node_add_prob 0.69
node_delete_prob 0.13
survival_threshold 0.28
aggregation_mutate_rate 0.12
weight_mutate_rate 0.83
bias_mutate_rate 0.78
batch_size 8
env_iterations 2
pop_size 200
activation_function sigmoid

MOEvoRL-RNN-NEAT CS15-Med-42: Best hyperparameter parameter configuration.

Parameter Value
conn_add_prob 0.73
conn_delete_prob 0.35
node_add_prob 0.65
node_delete_prob 0.33
survival_threshold 0.18
aggregation_mutate_rate 0.29
weight_mutate_rate 0.71
bias_mutate_rate 0.67
batch_size 8
env_iterations 2
pop_size 200
activation_function sigmoid

MOEvoRL-RNN-NEAT CS15-Med-AR-42: Best hyperparameter parameter configuration.

MODDPG Optimal Hyperparameters

Parameter Value
gamma 0.99
tau 0.04
per_alpha 0.71
learning_rate 1.1 x 10^{-5}
learning_starts 7500
policy_frequency 13
buffer_size $1 x 10^6$
batch_size 256
net_arch [1024, 1024, 1024]
activation_function relu
output_activation_function tanh
optimizer adam

MODDPG CS05-Med-42: Best hyperparameter parameter configuration.

Parameter Value
gamma 0.99
tau 0.09
per_alpha 0.60
learning_rate 1.8 x 10^{-5}
learning_starts 1500
policy_frequency 6
buffer_size $1 x 10^6$
batch_size 256
net_arch [1024, 1024, 1024]
activation_function relu
output_activation_function tanh
optimizer adam

MODDPG CS05-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
gamma 0.99
tau 0.02
per_alpha 0.65
learning_rate 6.2 x 10^{-5}
learning_starts 9100
policy_frequency 6
buffer_size $1 x 10^6$
batch_size 512
net_arch [1024, 1024, 1024]
activation_function relu
output_activation_function tanh
optimizer adam

MODDPG CS10-Med-42: Best hyperparameter parameter configuration.

Parameter Value
gamma 0.99
tau 0.04
per_alpha 0.80
learning_rate 8.6 x 10^{-5}
learning_starts 5600
policy_frequency 16
buffer_size $1 x 10^6$
batch_size 128
net_arch [1024, 1024, 1024]
activation_function relu
output_activation_function tanh
optimizer adam

MODDPG CS10-Med-AR-42: Best hyperparameter parameter configuration.

Parameter Value
gamma 0.99
tau 0.03
per_alpha 0.77
learning_rate 4.5 x 10^{-5}
learning_starts 2000
policy_frequency 19
buffer_size $1 x 10^6$
batch_size 512
net_arch [1024, 1024, 1024]
activation_function relu
output_activation_function tanh
optimizer adam

MODDPG CS15-Med-42: Best hyperparameter parameter configuration.

Parameter Value
gamma 0.99
tau 0.02
per_alpha 0.84
learning_rate 1.6 x 10^{-5}
learning_starts 1700
policy_frequency 1
buffer_size $1.5 x 10^6$
batch_size 128
net_arch [1024, 1024, 1024]
activation_function relu
output_activation_function tanh
optimizer adam

Appendix: Anaylsis of Charging Events

CS05 Charging Events

Arrival and Charging Patterns for CS05-Med-42

Arrival and Charging Patterns for CS05-Low-71

Arrival and Charging Patterns for CS05-Med-71

Arrival and Charging Patterns for CS05-High-71

EV Model Distribution in CS05-Med-42

EV Model Distribution in CS05-Low-71

EV Model Distribution in CS05-Med-71

EV Model Distribution in CS05-High-71

CS10 Charging Events

Arrival and Charging Patterns for CS10-Med-42

Arrival and Charging Patterns for CS10-Low-71

Arrival and Charging Patterns for CS10-Med-71

Arrival and Charging Patterns for CS10-High-71

EV Model Distribution in CS10-Med-42

EV Model Distribution in CS10-Low-71

EV Model Distribution in CS10-Med-71

EV Model Distribution in CS10-High-71

CS15 Charging Events

Arrival and Charging Patterns for CS15-Med-42

Arrival and Charging Patterns for CS15-Low-71

Arrival and Charging Patterns for CS15-Med-71

Arrival and Charging Patterns for CS15-High-71

EV Model Distribution in CS15-Med-42

EV Model Distribution in CS15-Low-71

EV Model Distribution in CS15-Med-71

EV Model Distribution in CS15-High-71

Appendix: Comparative Analysis of Training Dynamics

CS05-Med-42 Training Performance

R0 Comparison CS05-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-42, focusing on the reward R0 throughout the training episodes.

R1 Comparison CS05-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-42, focusing on the reward R1 throughout the training episodes.

R2 Comparison CS05-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-42, focusing on the reward R2 throughout the training episodes.

Success Rate Comparison CS05-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-42, focusing on the Success Rate throughout the training episodes.

Hypervolume Comparison CS05-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-42, focusing on the HV throughout the training episodes.

CS05-Med-AR-42 Training Performance

R0 Comparison CS05-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-AR-42, focusing on the reward R0 throughout the training episodes.

R1 Comparison CS05-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-AR-42, focusing on the reward R1 throughout the training episodes.

R2 Comparison CS05-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-AR-42, focusing on the reward R2 throughout the training episodes.

Hypervolume Comparison CS05-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS05-Med-AR-42, focusing on the HV throughout the training episodes.

CS10-Med-42 Training Performance

R0 Comparison CS10-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-42, focusing on the reward R0 throughout the training episodes.

R1 Comparison CS10-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-42, focusing on the reward R1 throughout the training episodes.

R2 Comparison CS10-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-42, focusing on the reward R2 throughout the training episodes.

Success Rate Comparison CS10-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-42, focusing on the Success Rate throughout the training episodes.

Hypervolume Comparison CS10-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-42, focusing on the HV throughout the training episodes.

CS10-Med-AR-42 Training Performance

R0 Comparison CS10-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-AR-42, focusing on the reward R0 throughout the training episodes.

R1 Comparison CS10-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-AR-42, focusing on the reward R1 throughout the training episodes.

R2 Comparison CS10-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-AR-42, focusing on the reward R2 throughout the training episodes.

Hypervolume Comparison CS10-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS10-Med-AR-42, focusing on the HV throughout the training episodes.

CS15-Med-42 Training Performance

R0 Comparison CS15-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-42, focusing on the reward R0 throughout the training episodes.

R1 Comparison CS15-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-42, focusing on the reward R1 throughout the training episodes.

R2 Comparison CS15-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-42, focusing on the reward R2 throughout the training episodes.

Success Rate Comparison CS15-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-42, focusing on the Success Rate throughout the training episodes.

Hypervolume Comparison CS15-Med-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-42, focusing on the HV throughout the training episodes.

CS15-Med-AR-42 Training Performance

R0 Comparison CS15-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-AR-42, focusing on the reward R0 throughout the training episodes.

R1 Comparison CS15-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-AR-42, focusing on the reward R1 throughout the training episodes.

R2 Comparison CS15-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-AR-42, focusing on the reward R2 throughout the training episodes.

Hypervolume Comparison CS15-Med-AR-42: Diagram provides a comparative analysis of the convergence behavior of five models in scenario CS15-Med-AR-42, focusing on the HV throughout the training episodes.

Appendix: Comparative Analysis of Failures

CS05-Low-71 Failure Analysis

Failure Classification CS05-Low-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS05-Low-71.

Failure Analysis CS05-Low-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS05-Low-71.

Failure Classification CS05-Low-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS05-Low-71.

Failure Analysis CS05-Low-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS05-Low-71.

Failure Classification CS05-Low-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS05-Low-71.

Failure Analysis CS05-Low-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS05-Low-71.

Failure Classification CS05-Low-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS05-Low-71.

Failure Analysis CS05-Low-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS05-Low-71.

Failure Classification CS05-Low-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS05-Low-71.

Failure Analysis CS05-Low-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS05-Low-71.

CS05-Med-71 Failure Analysis

Failure Classification CS05-Med-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS05-Med-71.

Failure Analysis CS05-Med-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS05-Med-71.

Failure Classification CS05-Med-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS05-Med-71.

Failure Analysis CS05-Med-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS05-Med-71.

Failure Classification CS05-Med-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS05-Med-71.

Failure Analysis CS05-Med-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS05-Med-71.

Failure Classification CS05-Med-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS05-Med-71.

Failure Analysis CS05-Med-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS05-Med-71.

Failure Classification CS05-Med-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS05-Med-71.

Failure Analysis CS05-Med-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS05-Med-71.

CS05-High-71 Failure Analysis

Failure Classification CS05-High-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS05-High-71.

Failure Analysis CS05-High-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS05-High-71.

Failure Classification CS05-High-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS05-High-71.

Failure Analysis CS05-High-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS05-High-71.

Failure Classification CS05-High-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS05-High-71.

Failure Analysis CS05-High-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS05-High-71.

Failure Classification CS05-High-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS05-High-71.

Failure Analysis CS05-High-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS05-High-71.

Failure Classification CS05-High-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS05-High-71.

Failure Analysis CS05-High-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS05-High-71.

CS10-Low-71 Failure Analysis

Failure Classification CS10-Low-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS10-Low-71.

Failure Analysis CS10-Low-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS10-Low-71.

Failure Classification CS10-Low-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS10-Low-71.

Failure Analysis CS10-Low-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS10-Low-71.

Failure Classification CS10-Low-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS10-Low-71.

Failure Analysis CS10-Low-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS10-Low-71.

Failure Classification CS10-Low-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS10-Low-71.

Failure Analysis CS10-Low-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS10-Low-71.

Failure Classification CS10-Low-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS10-Low-71.

Failure Analysis CS10-Low-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS10-Low-71.

CS10-Med-71 Failure Analysis

Failure Classification CS10-Med-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS10-Med-71.

Failure Analysis CS10-Med-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS10-Med-71.

Failure Classification CS10-Med-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS10-Med-71.

Failure Analysis CS10-Med-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS10-Med-71.

Failure Classification CS10-Med-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS10-Med-71.

Failure Analysis CS10-Med-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS10-Med-71.

Failure Classification CS10-Med-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS10-Med-71.

Failure Analysis CS10-Med-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS10-Med-71.

Failure Classification CS10-Med-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS10-Med-71.

Failure Analysis CS10-Med-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS10-Med-71.

CS10-High-71 Failure Analysis

Failure Classification CS10-High-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS10-High-71.

Failure Analysis CS10-High-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS10-High-71.

Failure Classification CS10-High-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS10-High-71.

Failure Analysis CS10-High-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS10-High-71.

Failure Classification CS10-High-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS10-High-71.

Failure Analysis CS10-High-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS10-High-71.

Failure Classification CS10-High-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS10-High-71.

Failure Analysis CS10-High-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS10-High-71.

Failure Classification CS10-High-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS10-High-71.

Failure Analysis CS10-High-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS10-High-71.

CS15-Low-71 Failure Analysis

Failure Classification CS15-Low-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS15-Low-71.

Failure Analysis CS15-Low-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS15-Low-71.

Failure Classification CS15-Low-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS15-Low-71.

Failure Analysis CS15-Low-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS15-Low-71.

Failure Classification CS15-Low-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS15-Low-71.

Failure Analysis CS15-Low-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS15-Low-71.

Failure Classification CS15-Low-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS15-Low-71.

Failure Analysis CS15-Low-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS15-Low-71.

Failure Classification CS15-Low-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS15-Low-71.

Failure Analysis CS15-Low-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS15-Low-71.

CS15-Med-71 Failure Analysis

Failure Classification CS15-Med-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS15-Med-71.

Failure Analysis CS15-Med-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS15-Med-71.

Failure Classification CS15-Med-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS15-Med-71.

Failure Analysis CS15-Med-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS15-Med-71.

Failure Classification CS15-Med-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS15-Med-71.

Failure Analysis CS15-Med-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS15-Med-71.

Failure Classification CS15-Med-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS15-Med-71.

Failure Analysis CS15-Med-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS15-Med-71.

Failure Classification CS15-Med-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS15-Med-71.

Failure Analysis CS15-Med-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS15-Med-71.

CS15-High-71 Failure Analysis

Failure Classification CS15-High-71 MOEvoRL-NSGA-II: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-NSGA-II algorithm in CS15-High-71.

Failure Analysis CS15-High-71 MOEvoRL-NSGA-II: Comprehensive failure analysis of the MOEvoRL-NSGA-II algorithm in CS15-High-71.

Failure Classification CS15-High-71 MOEvoRL-SPEA2: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-SPEA2 algorithm in CS15-High-71.

Failure Analysis CS15-High-71 MOEvoRL-SPEA2: Comprehensive failure analysis of the MOEvoRL-SPEA2 algorithm in CS15-High-71.

Failure Classification CS15-High-71 MOEvoRL-FF-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-FF-NEAT algorithm in CS15-High-71.

Failure Analysis CS15-High-71 MOEvoRL-FF-NEAT: Comprehensive failure analysis of the MOEvoRL-FF-NEAT algorithm in CS15-High-71.

Failure Classification CS15-High-71 MOEvoRL-RNN-NEAT: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MOEvoRL-RNN-NEAT algorithm in CS15-High-71.

Failure Analysis CS15-High-71 MOEvoRL-RNN-NEAT: Comprehensive failure analysis of the MOEvoRL-RNN-NEAT algorithm in CS15-High-71.

Failure Classification CS15-High-71 MODDPG: Bar chart depicting the distribution of the three failure categories Phase Imbalance L1-L2, L1-L3, L2-L3 and Connection Node Overload for the MODDPG algorithm in CS15-High-71.

Failure Analysis CS15-High-71 MODDPG: Comprehensive failure analysis of the MODDPG algorithm in CS15-High-71.

Appendix: Violin Plots

Due to the large number of violin plots, these are not inserted directly into the README file, but only linked.

CSxx-Med-42 Violin Plots

CSxx-Med-AR-42 Violin Plots

CS05-Low/Med/High-71 Violin Plots

CS10-Low/Med/High-71 Violin Plots

CS15-Low/Med/High-71 Violin Plots

About

This repository contains the extended appendix of the master thesis Multi-Objective and Evolutionary Reinforcement Learning Algorithms in Electric Vehicle Charging Management.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published