The repo contains the source code for the algorithms and results described in the paper “Learning multivariate temporal point processes via the time-change theorem” by Guilherme Augusto Zagatti, See-Kiong Ng, and Stéphane Bressan.
The repo is organised according to the following source tree.
. ├── bin │ ├── benchmark.py # main entry point for benchmarking models trained from the CLI │ ├── evaluate.py # main entry point for evaluating models trained from the CLI │ ├── experiment.py # main entry point for training from the CLI │ ├── run_multiple.py # run multiple experiments and validations │ └── sahp_to_ttpp.py # convert SAHP data to TTPP format ├── multittpp │ ├── config.py # default configurations │ ├── data.py # data loaders │ ├── flows # implementation of triangular maps for multi TPP │ │ ├── affine.py │ │ ├── base.py │ │ ├── block_diagonal.py │ │ ├── cumsum.py │ │ ├── exp.py │ │ ├── __init__.py │ │ ├── sigmoid.py │ │ ├── spline.py │ │ ├── transformer.py │ │ └── utils.py │ ├── __init__.py │ ├── models # implementation of multi TPP models │ │ ├── base.py # base model class │ │ └── __init__.py # concrete models │ ├── plot.py # plot helpers │ ├── trainer.py # trainer class which manages all training and validation routines │ └── utils.py # miscellaneous utilities ├── notebooks │ └── plots.org # paper plots ├── README.org ├── requirements.txt ├── setup.py └── tests # unit tests ├── conftest.py ├── test_flows.py # test all flows are invertible └── test_models.py 6 directories, 30 files