AIS 2024 Event-based Eye Tracking (CVPR Workshop 2024) 2nd Solution.
- Ubuntu22.04
- Python3.9
- Nvidia GPU1080Ti
Using the following command line for the installation of dependencies rquired to trn Ev-Eye.
git clone https://github.com/MrFisher97/Solution_For_Event_based_Eye_Tracking_Challenge.git
cd Solution_For_Event_based_Eye_Tracking_Challenge
conda create -n EvEye python==3.9
conda activate EvEye
conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
- Google Drive: https://drive.google.com/drive/folders/1aDEr-jOR1JeqiV-N49DuED27sSKuCKwu?usp=drive_link
We test the model from checkpooint model_best_ep769_val_loss_0.0388.pth
.
The result are shown below:
Eval | Test | |
---|---|---|
Loss | 0.0388 | - |
P5 acc | 0.918 | - |
P10 acc | 0.976 | 0.9948/0.9958 |
P15 acc | 0.985 | - |
Dist | 2.50 | - |
The configuration for training, evaluation and test is set on the configs/task.yaml
, modify it according to your need.
- You should change the
data_dir
setting in configs/taks.yaml to your dataset path, then execute the following command to start training:
python train.py --config_file task.yaml
- This process will generate the
metadata
andcached_dataset
directories which enable the fast data loading in training. - The training script has already contain the testing phase using the model trained under all epoches.
- Running
test.py
scripy will get the tracking prediction on test split and store the result onsubmission.csv
file
python test.py --config_file task.yaml --checkpoint your_model_path --log_dir store_result_path
Using the following command to visualze the tracking result on eval/test split:
python visualize --config_file task.yaml --checkpoint your_model_path --split test
This code is based on the https://github.com/EETChallenge/challenge_demo_code