forked from ppdebreuck/modnet
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:ppdebreuck/modnet
- Loading branch information
Showing
5 changed files
with
272 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
__version__ = "0.4.3" | ||
__version__ = "0.4.4" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
"""This submodule contains the `Matminer2024FastFeaturizer` class. """ | ||
|
||
import numpy as np | ||
import modnet.featurizers | ||
import contextlib | ||
|
||
|
||
class Matminer2024FastFeaturizer(modnet.featurizers.MODFeaturizer): | ||
"""A set of efficient featurizers for features implemented in matminer | ||
at time of creation (matminer v0.9.2 from 2024). | ||
Removes featurizers that are known to be slow (i.e., orders of magnitude | ||
more intensive to compute than the rest of the featurizers). | ||
""" | ||
|
||
def __init__( | ||
self, | ||
fast_oxid: bool = True, | ||
continuous_only: bool = True, | ||
): | ||
"""Creates the featurizer and imports all featurizer functions. | ||
Parameters: | ||
fast_oxid: Whether to use the accelerated oxidation state parameters within | ||
pymatgen when constructing features that constrain oxidation states such | ||
that all sites with the same species in a structure will have the same | ||
oxidation state (recommended if featurizing any structure | ||
with large unit cells). | ||
continuous_only: Whether to keep only the features that are continuous | ||
with respect to the composition (only for composition featurizers). | ||
Discontinuous features may lead to discontinuities in the model predictions. | ||
""" | ||
|
||
super().__init__() | ||
self.drop_allnan = False | ||
self.fast_oxid = fast_oxid | ||
self.continuous_only = continuous_only | ||
self.load_featurizers() | ||
|
||
def load_featurizers(self): | ||
with contextlib.redirect_stdout(None): | ||
from matminer.featurizers.composition import ( | ||
BandCenter, | ||
ElementFraction, | ||
ElementProperty, | ||
Stoichiometry, | ||
TMetalFraction, | ||
ValenceOrbital, | ||
) | ||
from matminer.featurizers.structure import ( | ||
DensityFeatures, | ||
EwaldEnergy, | ||
GlobalSymmetryFeatures, | ||
StructuralComplexity, | ||
) | ||
from matminer.utils.data import ( | ||
DemlData, | ||
PymatgenData, | ||
) | ||
|
||
pymatgen_features = [ | ||
"block", | ||
"mendeleev_no", | ||
"electrical_resistivity", | ||
"velocity_of_sound", | ||
"thermal_conductivity", | ||
"bulk_modulus", | ||
"coefficient_of_linear_thermal_expansion", | ||
] | ||
|
||
deml_features = [ | ||
"atom_radius", | ||
"molar_vol", | ||
"heat_fusion", | ||
"boiling_point", | ||
"heat_cap", | ||
"first_ioniz", | ||
"electric_pol", | ||
"GGAU_Etot", | ||
"mus_fere", | ||
"FERE correction", | ||
] | ||
|
||
magpie_featurizer = ElementProperty.from_preset("magpie") | ||
magpie_featurizer.stats = ["mean", "avg_dev"] | ||
|
||
pymatgen_featurizer = ElementProperty( | ||
data_source=PymatgenData(), | ||
stats=["mean", "avg_dev"], | ||
features=pymatgen_features, | ||
) | ||
|
||
deml_featurizer = ElementProperty( | ||
data_source=DemlData(), | ||
stats=["mean", "avg_dev"], | ||
features=deml_features, | ||
) | ||
|
||
self.composition_featurizers = ( | ||
BandCenter(), | ||
ElementFraction(), | ||
magpie_featurizer, | ||
pymatgen_featurizer, | ||
deml_featurizer, | ||
Stoichiometry(p_list=[2, 3, 5, 7, 10]), | ||
TMetalFraction(), | ||
ValenceOrbital(props=["frac"]), | ||
) | ||
|
||
self.oxid_composition_featurizers = [] | ||
|
||
self.structure_featurizers = ( | ||
DensityFeatures(), | ||
EwaldEnergy(), | ||
GlobalSymmetryFeatures(), | ||
StructuralComplexity(), | ||
) | ||
|
||
self.site_featurizers = [] | ||
|
||
def featurize_composition(self, df): | ||
"""Applies the preset composition featurizers to the input dataframe, | ||
renames some fields and cleans the output dataframe. | ||
""" | ||
from pymatgen.core.periodic_table import Element | ||
|
||
df = super().featurize_composition(df) | ||
|
||
if self.composition_featurizers and not self.continuous_only: | ||
_orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} | ||
df["AtomicOrbitals|HOMO_character"] = df[ | ||
"AtomicOrbitals|HOMO_character" | ||
].map(_orbitals) | ||
df["AtomicOrbitals|LUMO_character"] = df[ | ||
"AtomicOrbitals|LUMO_character" | ||
].map(_orbitals) | ||
|
||
df["AtomicOrbitals|HOMO_element"] = df["AtomicOrbitals|HOMO_element"].apply( | ||
lambda x: -1 if not isinstance(x, str) else Element(x).Z | ||
) | ||
df["AtomicOrbitals|LUMO_element"] = df["AtomicOrbitals|LUMO_element"].apply( | ||
lambda x: -1 if not isinstance(x, str) else Element(x).Z | ||
) | ||
|
||
if self.continuous_only: | ||
# These are additional features that have shown discontinuities in my tests. | ||
# Hopefully, I got them all... | ||
df.drop( | ||
columns=[ | ||
"ElementProperty|DemlData mean electric_pol", | ||
"ElementProperty|DemlData mean FERE correction", | ||
"ElementProperty|DemlData mean GGAU_Etot", | ||
"ElementProperty|DemlData mean heat_fusion", | ||
"ElementProperty|DemlData mean mus_fere", | ||
], | ||
inplace=True, | ||
errors="ignore", | ||
) | ||
|
||
if self.oxid_composition_featurizers: | ||
df.drop(columns=["IonProperty|max ionic char"], inplace=True) | ||
|
||
return modnet.featurizers.clean_df(df, drop_allnan=self.drop_allnan) | ||
|
||
def featurize_structure(self, df): | ||
"""Applies the preset structural featurizers to the input dataframe, | ||
renames some fields and cleans the output dataframe. | ||
""" | ||
|
||
if self.structure_featurizers: | ||
df = super().featurize_structure(df) | ||
|
||
_crystal_system = { | ||
"cubic": 1, | ||
"tetragonal": 2, | ||
"orthorombic": 3, | ||
"hexagonal": 4, | ||
"trigonal": 5, | ||
"monoclinic": 6, | ||
"triclinic": 7, | ||
} | ||
|
||
def _int_map(x): | ||
if x == np.nan: | ||
return 0 | ||
elif x: | ||
return 1 | ||
else: | ||
return 0 | ||
|
||
df["GlobalSymmetryFeatures|crystal_system"] = df[ | ||
"GlobalSymmetryFeatures|crystal_system" | ||
].map(_crystal_system) | ||
df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[ | ||
"GlobalSymmetryFeatures|is_centrosymmetric" | ||
].map(_int_map) | ||
|
||
return modnet.featurizers.clean_df(df, drop_allnan=self.drop_allnan) | ||
|
||
def featurize_site(self, df): | ||
"""Applies the preset site featurizers to the input dataframe, | ||
renames some fields and cleans the output dataframe. | ||
""" | ||
|
||
# rename some features for backwards compatibility with pretrained models | ||
aliases = { | ||
"GeneralizedRadialDistributionFunction": "GeneralizedRDF", | ||
"AGNIFingerprints": "AGNIFingerPrint", | ||
"BondOrientationalParameter": "BondOrientationParameter", | ||
} | ||
df = super().featurize_site(df, aliases=aliases) | ||
df = df.loc[:, (df != 0).any(axis=0)] | ||
|
||
return modnet.featurizers.clean_df(df, drop_allnan=self.drop_allnan) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters