-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
229 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"collapsed": true, | ||
"pycharm": { | ||
"name": "#%% md\n" | ||
} | ||
}, | ||
"source": [ | ||
"# Train a Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"outputs": [], | ||
"source": [ | ||
"from pyxtal_ff import PyXtal_FF\n", | ||
"import os\n", | ||
"import urllib.request" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Downloading the training and test data\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"TrainData = \"training.json\"\n", | ||
"TestData = \"test.json\"\n", | ||
"\n", | ||
"if not os.path.exists(TrainData):\n", | ||
" if not os.path.exists('data'):\n", | ||
" os.mkdir('data')\n", | ||
" os.chdir('data')\n", | ||
" print('Downloading the training and test data')\n", | ||
"\n", | ||
" url = \"https://raw.githubusercontent.com/materialsvirtuallab/mlearn/master/data/Si/\"\n", | ||
"\n", | ||
" urllib.request.urlretrieve(f\"{url}/{TrainData}\", TrainData)\n", | ||
" urllib.request.urlretrieve(f\"{url}/{TestData}\", TestData)\n", | ||
" os.chdir('..')" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"outputs": [], | ||
"source": [ | ||
"if True:\n", | ||
" folder = 'Si-snap-zbl/'\n", | ||
" descriptor = {'type': 'SNAP',\n", | ||
" 'weights': {'Si': 1.0},\n", | ||
" 'Rc': 5.0,\n", | ||
" 'parameters': {'lmax': 3},\n", | ||
" 'base_potential': {'inner': 1.5, 'outer': 2.0}, #zbl potential\n", | ||
" 'ncpu': 1,\n", | ||
" }\n", | ||
"else:\n", | ||
" # Not working so far\n", | ||
" folder = 'Si-so3-zbl/'\n", | ||
" descriptor = {'type': 'SO3',\n", | ||
" 'weights': {'Si': 1.0},\n", | ||
" 'Rc': 5.0,\n", | ||
" 'parameters': {'lmax': 4, 'nmax': 3},\n", | ||
" 'base_potential': {'inner': 1.5, 'outer': 2.0}, #zbl potential\n", | ||
" 'ncpu': 1,\n", | ||
" }" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"outputs": [], | ||
"source": [ | ||
"model = {'system' : ['Si'],\n", | ||
" 'hiddenlayers': [12, 12],\n", | ||
" 'path': folder,\n", | ||
" #'restart': folder + '12-12-checkpoint.pth',\n", | ||
" 'optimizer': {'method': 'lbfgs'},\n", | ||
" 'force_coefficient': 2e-2,\n", | ||
" 'stress_coefficient': 2e-3,\n", | ||
" \"stress_group\": [\"Elastic\"],\n", | ||
" 'alpha': 1e-6,\n", | ||
" 'epoch': 1000,\n", | ||
" }" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"\n", | ||
"\n", | ||
"\n", | ||
" ______ _ _ _ _______ _______ \n", | ||
" (_____ \\ \\ \\ / / | | (_______|_______)\n", | ||
" _____) ) _ \\ \\/ / |_ ____| | _____ _____ \n", | ||
" | ____/ | | | ) (| _)/ _ | | | ___) | ___) \n", | ||
" | | | |_| |/ /\\ \\ |_( ( | | |_______| | | | \n", | ||
" |_| \\__ /_/ \\_\\___)_||_|_(_______)_| |_| \n", | ||
" (____/ \n", | ||
"\n", | ||
"\n", | ||
" A Python package for Machine Learning Interatomic Force Field\n", | ||
" Developed by Zhu's group at University of Nevada Las Vegas\n", | ||
" The source code is available at https://github.com/qzhu2017/FF-project\n", | ||
"\n", | ||
"\n", | ||
"=========================== version 0.1.9 =============================\n", | ||
"\n", | ||
"Descriptor parameters:\n", | ||
"type : SNAP\n", | ||
"Rc : 5.0\n", | ||
"cutoff : cosine\n", | ||
"lmax : 3\n", | ||
"rfac : 0.99363\n", | ||
"\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"ename": "UnboundLocalError", | ||
"evalue": "local variable 'structure_dict' referenced before assignment", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m", | ||
"\u001B[1;31mUnboundLocalError\u001B[0m Traceback (most recent call last)", | ||
"\u001B[1;32m~\\AppData\\Local\\Temp/ipykernel_16420/3131584846.py\u001B[0m in \u001B[0;36m<module>\u001B[1;34m\u001B[0m\n\u001B[0;32m 1\u001B[0m \u001B[0mff\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0mPyXtal_FF\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mdescriptors\u001B[0m\u001B[1;33m=\u001B[0m\u001B[0mdescriptor\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mmodel\u001B[0m\u001B[1;33m=\u001B[0m\u001B[0mmodel\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[1;32m----> 2\u001B[1;33m \u001B[0mff\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mrun\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mmode\u001B[0m\u001B[1;33m=\u001B[0m\u001B[1;34m'train'\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mTrainData\u001B[0m\u001B[1;33m=\u001B[0m\u001B[0mos\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mjoin\u001B[0m\u001B[1;33m(\u001B[0m\u001B[1;34m\"data\"\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mTrainData\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mTestData\u001B[0m\u001B[1;33m=\u001B[0m\u001B[0mos\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mjoin\u001B[0m\u001B[1;33m(\u001B[0m\u001B[1;34m\"data\"\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mTestData\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0m", | ||
"\u001B[1;32m~\\PycharmProjects\\PyXtal_FF\\pyxtal_ff\\__init__.py\u001B[0m in \u001B[0;36mrun\u001B[1;34m(self, mode, TrainData, TestData, mliap)\u001B[0m\n\u001B[0;32m 263\u001B[0m \u001B[1;32mif\u001B[0m \u001B[1;32mnot\u001B[0m \u001B[0mos\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mexists\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mself\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m+\u001B[0m\u001B[1;34m'Train_db.dat'\u001B[0m\u001B[1;33m)\u001B[0m \u001B[1;32mand\u001B[0m \u001B[1;32mnot\u001B[0m \u001B[0mos\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mexists\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mself\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m+\u001B[0m\u001B[1;34m'Train_db.db'\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m:\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0;32m 264\u001B[0m \u001B[0mtrainDB\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0mDatabase\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mname\u001B[0m\u001B[1;33m=\u001B[0m\u001B[0mself\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m+\u001B[0m\u001B[1;34m'Train_db'\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[1;32m--> 265\u001B[1;33m \u001B[0mtrainDB\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mstore\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mTrainData\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mself\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0m_descriptors\u001B[0m\u001B[1;33m,\u001B[0m \u001B[1;32mTrue\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mself\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m+\u001B[0m\u001B[1;34m'ase.db'\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0m\u001B[0;32m 266\u001B[0m \u001B[1;32melse\u001B[0m\u001B[1;33m:\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0;32m 267\u001B[0m \u001B[0mtrainDB\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0mDatabase\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mname\u001B[0m\u001B[1;33m=\u001B[0m\u001B[0mself\u001B[0m\u001B[1;33m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[1;33m+\u001B[0m\u001B[1;34m'Train_db'\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n", | ||
"\u001B[1;32m~\\PycharmProjects\\PyXtal_FF\\pyxtal_ff\\utilities\\__init__.py\u001B[0m in \u001B[0;36mstore\u001B[1;34m(self, structure_file, function, storage, ase_db)\u001B[0m\n\u001B[0;32m 91\u001B[0m \u001B[1;31m# extract the structures and energy, forces, and stress information.\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0;32m 92\u001B[0m \u001B[1;32mif\u001B[0m \u001B[0mfmt\u001B[0m \u001B[1;33m==\u001B[0m \u001B[1;34m'json'\u001B[0m\u001B[1;33m:\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[1;32m---> 93\u001B[1;33m \u001B[0mdata\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0mparse_json\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mstructure_file\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0m\u001B[0;32m 94\u001B[0m \u001B[1;32melif\u001B[0m \u001B[0mfmt\u001B[0m \u001B[1;33m==\u001B[0m \u001B[1;34m'vasp-out'\u001B[0m\u001B[1;33m:\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0;32m 95\u001B[0m \u001B[0mdata\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0mparse_OUTCAR_comp\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mstructure_file\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n", | ||
"\u001B[1;32m~\\PycharmProjects\\PyXtal_FF\\pyxtal_ff\\utilities\\__init__.py\u001B[0m in \u001B[0;36mparse_json\u001B[1;34m(path, N, Random)\u001B[0m\n\u001B[0;32m 337\u001B[0m \u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0;32m 338\u001B[0m \u001B[1;32mif\u001B[0m \u001B[0mN\u001B[0m \u001B[1;32mis\u001B[0m \u001B[1;32mNone\u001B[0m\u001B[1;33m:\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[1;32m--> 339\u001B[1;33m \u001B[0mN\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0mlen\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mstructure_dict\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0m\u001B[0;32m 340\u001B[0m \u001B[1;32melif\u001B[0m \u001B[0mRandom\u001B[0m \u001B[1;32mand\u001B[0m \u001B[0mN\u001B[0m \u001B[1;33m<\u001B[0m \u001B[0mlen\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mstructure_dict\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m:\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0;32m 341\u001B[0m \u001B[0mstructure_dict\u001B[0m \u001B[1;33m=\u001B[0m \u001B[0msample\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mstructure_dict\u001B[0m\u001B[1;33m,\u001B[0m \u001B[0mN\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n", | ||
"\u001B[1;31mUnboundLocalError\u001B[0m: local variable 'structure_dict' referenced before assignment" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"ff = PyXtal_FF(descriptors=descriptor, model=model)\n", | ||
"ff.run(mode='train', TrainData=os.path.join(\"data\", TrainData), TestData=os.path.join(\"data\", TestData))" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |