Skip to content

Maryam483/EasyOCR-Trainer

 
 

Repository files navigation

EasyOCR trainer

EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding.

Training

Fine tunning currently model

  1. Download Model for fine tunning : english_g2 -> unzip and move to destination directory all_data

  2. Download sample dataset : en_sample -> unzip and move to destination directory saved_models

  3. Add config yaml in directory config_files/name_config.yaml I used the filename en_fine_tunning_config.yaml

    number: '0123456789'
    symbol: "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~ €"
    lang_char: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
    experiment_name: 'en_sample'
    train_data: 'all_data'
    valid_data: 'all_data/en_sample'
    manualSeed: 1111
    workers: 6
    batch_size: 32 #32
    num_iter: 300000 # you can custom num_iter
    valInterval: 100 # you can custom interval validation
    saved_model: 'saved_models/english_g2.pth' #'saved_models/en_filtered/iter_300000.pth'
    FT: False
    optim: False # default is Adadelta
    lr: 1.
    beta1: 0.9
    rho: 0.95
    eps: 0.00000001
    grad_clip: 5
    #Data processing
    select_data: 'en_sample' # this is dataset folder in train_data
    batch_ratio: '1' 
    total_data_usage_ratio: 1.0
    batch_max_length: 34 
    imgH: 64
    imgW: 600
    rgb: False
    contrast_adjust: False
    sensitive: True
    PAD: True
    contrast_adjust: 0.0
    data_filtering_off: False
    # Model Architecture
    Transformation: 'None'
    FeatureExtraction: 'VGG'
    SequenceModeling: 'BiLSTM'
    Prediction: 'CTC'
    num_fiducial: 20
    input_channel: 1
    output_channel: 256
    hidden_size: 256
    decode: 'greedy'
    new_prediction: False
    freeze_FeatureFxtraction: False
    freeze_SequenceModeling: False
    
  4. Start training

    def get_config(file_path):
        with open(file_path, 'r', encoding="utf8") as stream:
            opt = yaml.safe_load(stream)
        opt = AttrDict(opt)
        if opt.lang_char == 'None':
            characters = ''
            for data in opt['select_data'].split('-'):
                csv_path = os.path.join(opt['train_data'], data, 'labels.csv')
                df = pd.read_csv(csv_path, sep='^([^,]+),', engine='python', usecols=['filename', 'words'], keep_default_na=False)
                all_char = ''.join(df['words'])
                characters += ''.join(set(all_char))
            characters = sorted(set(characters))
            opt.character= ''.join(characters)
        else:
            opt.character = opt.number + opt.symbol + opt.lang_char
        os.makedirs(f'./saved_models/{opt.experiment_name}', exist_ok=True)
        return opt
    
    opt = get_config("config_files/en_fine_tunning_config.yaml")
    train(opt, amp=False)
    

    Log Training

training time:  26.636059284210205
[100/300000] Train loss: 0.01502, Valid loss: 0.00408, Elapsed_time: 26.64084
Current_accuracy : 99.320, Current_norm_ED  : 0.9993
Best_accuracy    : 99.320, Best_norm_ED     : 0.9993
--------------------------------------------------------------------------------
Ground Truth              | Prediction                | Confidence Score & T/F
--------------------------------------------------------------------------------
Zsasz @Johnnie Dean_DMSP  | Zsasz @Johnnie Dean_DMSP  | 0.0232	True
Rupp ? OCCUPIED Wmkx      | Rupp ? OCCUPIED Wmkx      | 0.3271	True
--------------------------------------------------------------------------------

  1. Run model training in easy_ocr

    1. model: easyocr default saved in ~.EasyOCR, please move your model trained in ~.EasyOCR/model/en_sample.pth
    2. user_network: in directory user_network there are neural network file and config. Please create a files
    3. user network : filename en_sample.py -> you can custom filename
    import torch.nn as nn
    
    class BidirectionalLSTM(nn.Module):
    
        def __init__(self, input_size, hidden_size, output_size):
            super(BidirectionalLSTM, self).__init__()
            self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True)
            self.linear = nn.Linear(hidden_size * 2, output_size)
    
        def forward(self, input):
            """
            input : visual feature [batch_size x T x input_size]
            output : contextual feature [batch_size x T x output_size]
            """
            try: # multi gpu needs this
                self.rnn.flatten_parameters()
            except: # quantization doesn't work with this 
                pass
            recurrent, _ = self.rnn(input)  # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
            output = self.linear(recurrent)  # batch_size x T x output_size
            return output
    
    class VGG_FeatureExtractor(nn.Module):
    
        def __init__(self, input_channel, output_channel=256):
            super(VGG_FeatureExtractor, self).__init__()
            self.output_channel = [int(output_channel / 8), int(output_channel / 4),
                                   int(output_channel / 2), output_channel]
            self.ConvNet = nn.Sequential(
                nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True),
                nn.MaxPool2d(2, 2),
                nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True),
                nn.MaxPool2d(2, 2),
                nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True),
                nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True),
                nn.MaxPool2d((2, 1), (2, 1)),
                nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False),
                nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True),
                nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False),
                nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True),
                nn.MaxPool2d((2, 1), (2, 1)),
                nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True))
    
        def forward(self, input):
            return self.ConvNet(input)
    
    class Model(nn.Module):
    
        def __init__(self, input_channel, output_channel, hidden_size, num_class):
            super(Model, self).__init__()
            """ FeatureExtraction """
            self.FeatureExtraction = VGG_FeatureExtractor(input_channel, output_channel)
            self.FeatureExtraction_output = output_channel
            self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1))
    
            """ Sequence modeling"""
            self.SequenceModeling = nn.Sequential(
                BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size),
                BidirectionalLSTM(hidden_size, hidden_size, hidden_size))
            self.SequenceModeling_output = hidden_size
    
            """ Prediction """
            self.Prediction = nn.Linear(self.SequenceModeling_output, num_class)
    
    
        def forward(self, input, text):
            """ Feature extraction stage """
            visual_feature = self.FeatureExtraction(input)
            visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2))
            visual_feature = visual_feature.squeeze(3)
    
            """ Sequence modeling stage """
            contextual_feature = self.SequenceModeling(visual_feature)
    
            """ Prediction stage """
            prediction = self.Prediction(contextual_feature.contiguous())
    
            return prediction
    
    
    1. config : filename en_sample.yaml -> you can custom filename

      network_params:
      input_channel: 1
      output_channel: 256
      hidden_size: 256
      imgH: 64
      lang_list:
              - 'en'
      character_list: 0123456789!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ €ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
      
      
    2. Interface load model

      import easyocr
      
      reader = easyocr.Reader(['en'], recog_network='en_sample')
      

Releases

No releases published

Packages

No packages published

Languages

  • Python 80.3%
  • Jupyter Notebook 19.6%
  • Shell 0.1%